【題目】如圖,在Rt△ABC中,∠C=90°,D是BC邊上一點,∠BAD=45°,AC=3,AB=,求BD的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于點和,給出如下定義:若,則稱點Q為點P的“可控變點”.
例如,點的“可控變點”為點,點的“可控變點”為點.
(1)點的“可控變點”坐標(biāo)為 ;
(2)若點P在函數(shù)的圖象上,其“可控變點”Q的縱坐標(biāo)是7,求“可控變點” Q的橫坐標(biāo);
(3)若點P在函數(shù)的圖象上,其“可控變點”Q的縱坐標(biāo)的取值范圍是,直接寫出實數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,矩形ABCD是由兩個邊長為1的正方形構(gòu)成.請你剪兩刀后拼成一個與矩形ABCD面積相等的正方形.
(2)如圖2,矩形EFGH的長FG為6,寬EF為4,用剪刀剪兩次,然后將其拼接成一個與矩形EFGH面積相等的正方形,畫出裁剪線及拼接后的圖形,簡要說明裁剪線是如何確定的.如果你沒有想到好方法,不用急,請沉著應(yīng)對.細(xì)讀下列數(shù)學(xué)事實或許對你解決有幫助.
(3)如圖3,在⊙O中,MN為直徑,PQ⊥MN,垂足為點Q,交⊙O于點P,連結(jié)PM、PN.易證明PQ2=MQNQ.此結(jié)論可直接運用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求不等式(2x﹣1)(x+3)>0的解集.
解:根據(jù)“同號兩數(shù)相乘,積為正”可得:①或 ②.
解①得x>;解②得x<﹣3.
∴不等式的解集為x>或x<﹣3.
請你仿照上述方法解決下列問題:
(1)求不等式(2x﹣3)(x+1)<0的解集.
(2)求不等式≥0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以Rt△ABC的直角邊AB為直徑作半圓⊙O與邊BC交于點D,過D作半圓的切線與邊AC交于點E,過E作EF∥AB,與BC交于點F.若AB=20,OF=7.5,則CD的長為( )
A.7B.8C.9D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E點是正方形ABCD的邊BC上一點,AB=12,BE=5,△ABE逆時針旋轉(zhuǎn)后能夠與△ADF重合.
(1)旋轉(zhuǎn)中心是 ,旋轉(zhuǎn)角為 度;
(2)△AEF是 三角形;
(3)求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“馬航事件”的發(fā)生引起了我國政府的高度重視,我國政府迅速派出了艦船和飛機(jī)到相關(guān)海域進(jìn)行搜尋.如圖,在一次空中搜尋中,水平飛行的飛機(jī)在點A處測得前方海面的點F處有疑似飛機(jī)殘骸的物體(該物體視為靜止),此時的俯角為30°.為了便于觀察,飛機(jī)繼續(xù)向前飛行了800m到達(dá)B點,此時測得點F的俯角為45°.請你計算當(dāng)飛機(jī)飛臨F點的正上方點C時(點A,B,C在同一直線上),豎直高度CF約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
(1)如果AB=AC.如圖①,且點D在線段BC上運動.試判斷線段CF與BD之間的位置關(guān)系,并證明你的結(jié)論.
(2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結(jié)論是否成立,為什么?
(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設(shè)AC=4,BC=3,CD=x,求線段CP的長.(用含x的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com