【題目】如圖,在平面直角坐標(biāo)系xOy中,以點O為圓心的圓分別交x軸的正半軸于點M,交y軸的正半軸于點N.劣弧的長為,直線x軸、y軸分別交于點A、B

(1)求證:直線AB與⊙O相切;

(2)求圖中所示的陰影部分的面積(結(jié)果用π表示)

【答案】(1)證明見解析;(2)

【解析】

試題(1)作OD⊥ABD,由弧長公式和已知條件求出半徑OM=,由直線解析式求出點AB的坐標(biāo),得出OA=3OB=4,由勾股定理求出AB=5,再由△AOB面積的計算方法求出OD,即可得出結(jié)論;

2)陰影部分的面積=△AOB的面積扇形OMN的面積,即可得出結(jié)果.

試題解析:(1)證明:作OD⊥ABD,如圖所示:

劣弧的長為,=,解得:OM=,即⊙O的半徑為,直線x軸、y軸分別交于點A、B,當(dāng)y=0時,x=3;當(dāng)x=0時,y=4,∴A30),B0,4),∴OA=3,OB=4,∴AB==5,∵△AOB的面積=ABOD=OAOB∴OD===半徑OM,直線AB⊙O相切;

2)解:圖中所示的陰影部分的面積=△AOB的面積扇形OMN的面積==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】服裝店準(zhǔn)備購進甲乙兩種服裝共100件,費用不得超過7500.甲種服裝每件進價80元,每件售價120元;乙種服裝每件進價60元,每件售價90.

(Ⅰ)設(shè)購進甲種服裝件,試填寫下表.

表一

購進甲種服裝的數(shù)量/

10

20

購進甲種服裝所用費用/

800

1600

購進乙種服裝所用費用/

5400

表二

購進甲種服裝的數(shù)量/

10

20

甲種服裝獲得的利潤/

800

乙種服裝獲得的利潤/

2700

2400

(Ⅱ)給出能夠獲得最大利潤的進貨方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘船由A港沿北偏東65°方向航行kmB港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.

求:(1)∠C的度數(shù);

2A,C兩港之間的距離為多少km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解2012年全國中學(xué)生創(chuàng)新能力大賽中競賽項目知識產(chǎn)權(quán)筆試情況,隨機抽查了部分參賽同學(xué)的成績,整理并制作圖表如下:

分數(shù)段

頻數(shù)

頻率

60≤x70

30

0.1

70≤x80

90

n

80≤x90

m

0.4

90≤x≤100

60

0.2

請根據(jù)以上圖表提供的信息,解答下列問題:

1)本次調(diào)查的樣本容量為 ;

2)在表中:m= n= ;

3)補全頻數(shù)分布直方圖:

4)參加比賽的小聰說,他的比賽成績是所有抽查同學(xué)成績的中位數(shù),據(jù)此推斷他的成績落在 分數(shù)段內(nèi);

5)如果比賽成績80分以上(含80分)為優(yōu)秀,那么你估計該競賽項目的優(yōu)秀率大約是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:,其中x是不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC 中,∠C90°,以BC為直徑的半圓交AB于點D,O是該半圓所在圓的圓心,E為線段AC上一點,且ED=EA.

1)求證:ED是⊙O的切線;

2)若,∠A=30°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,將ABO繞點A順時針旋轉(zhuǎn)到AB1C1的位置,點BO分別落在點B1、C1處,點B1x軸上,再將AB1C1繞點B1順時針旋轉(zhuǎn)到A1B1C2的位置,點C2x軸上,將A1B1C2繞點C2順時針旋轉(zhuǎn)到A2B2C2的位置,點A2x軸上,依次進行下去若點A0),B0,2),則點B2018的坐標(biāo)為( 。

A. 6048,0B. 6054,0C. 6048,2D. 6054,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC.ABC沿AB翻折后得到ABD.

(1)試說明點D在⊙O上;

(2)在線段AD的延長線上取一點E,使AB2=AC·AE.求證:BE為⊙O的切線;

(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展課外活動,分音樂、體育、美術(shù)、制作四個活動項目,隨機抽取部分學(xué)生對其選擇參加的活動項目進行調(diào)查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖.

請根據(jù)上述統(tǒng)計圖提供的信息,完成下列問題:

1)這次抽查的樣本容量是  ;

2)請補全上述條形統(tǒng)計圖,并求出扇形圖中“美術(shù)”所占的圓心角度數(shù);

3)若該校有2000名學(xué)生,請你用此樣本估計參加“藝術(shù)”類活動項目(“藝術(shù)”類活動包括“音樂”和“美術(shù)”兩個項目)的學(xué)生人數(shù)約為多少人.

查看答案和解析>>

同步練習(xí)冊答案