【題目】(操作發(fā)現(xiàn))
(1)如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于30°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D,在三角板斜邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=30°,連接AF,EF.
①求∠EAF的度數(shù);
②DE與EF相等嗎?請說明理由;
(類比探究)
(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于45°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D,在三角板另一直角邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=45°,連接AF,EF.請直接寫出探究結(jié)果:
①∠EAF的度數(shù);
②線段AE,ED,DB之間的數(shù)量關(guān)系.
【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2
【解析】
試題(1)①由等邊三角形的性質(zhì)得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,證明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;
②證出∠DCE=∠FCE,由SAS證明△DCE≌△FCE,得出DE=EF即可;
(2)①由等腰直角三角形的性質(zhì)得出AC=BC,∠BAC=∠B=45°,證出∠ACF=∠BCD,由SAS證明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;
②證出∠DCE=∠FCE,由SAS證明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出結(jié)論.
試題解析:解:(1)①∵△ABC是等邊三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.
在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;
②DE=EF.理由如下:
∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;
(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;
②AE2+DB2=DE2,理由如下:
∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,,設(shè),.
(1)如圖1,當(dāng)點(diǎn)在內(nèi),
①若,求的度數(shù);
小明同學(xué)通過分析已知條件發(fā)現(xiàn):是頂角為的等腰三角形,且,從而容易聯(lián)想到構(gòu)造一個(gè)頂角為的等腰三角形.于是,他過點(diǎn)作,且,連接,發(fā)現(xiàn)兩個(gè)不同的三角形全等:_____________再利用全等三角形及等腰三角形的相關(guān)知識可求出的度數(shù)
請利用小王同學(xué)分析的思路,通過計(jì)算求得的度數(shù)為_____;
②小王在①的基礎(chǔ)上進(jìn)一步進(jìn)行探索,發(fā)現(xiàn)之間存在一種特殊的等量關(guān)系,請寫出這個(gè)等量關(guān)系,并加以證明.
(2)如圖2,點(diǎn)在外,那么之間的數(shù)量關(guān)系是否改變?若改變,請直接寫出它們的數(shù)量關(guān)系;若不變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,把沿折疊,點(diǎn)的對應(yīng)點(diǎn)為,連接,使平分,若,則點(diǎn)是( )
A.的內(nèi)心B.的外心C.的內(nèi)心D.的外心
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點(diǎn)P滿足S△PAB=S矩形ABCD,則點(diǎn)P到A、B兩點(diǎn)的距離之和PA+PB的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,將矩形ABCD折疊,使BC落在對角線BD上,折痕為BE,點(diǎn)C落在點(diǎn)C'處,若∠ADB=54°,則∠DBE的度數(shù)為 °.
(2)小明手中有一張矩形紙片ABCD,AB=4,AD=9.(畫一畫)如圖2,點(diǎn)E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為MN(點(diǎn)M,N分別在邊AD,BC上),利用直尺和圓規(guī)畫出折痕MN(不寫作法,保留作圖痕跡,并用黑色水筆把線段MN描清楚);
(3)(算一算)如圖3,點(diǎn)F在這張矩形紙片的邊BC上,將紙片折疊,使FB落在射線FD上,折痕為GF,點(diǎn)A,B分別落在點(diǎn)A',B'處,若AG=,求B'D的長;
(4)(驗(yàn)一驗(yàn))如圖4,點(diǎn)K在這張矩形紙片的邊AD上,DK=3,將紙片折疊,使AB落在CK所在直線上,折痕為HI,點(diǎn)A,B分別落在點(diǎn)A',B'處,小明認(rèn)為B'I所在直線恰好經(jīng)過點(diǎn)D,他的判斷是否正確,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,某超市從一樓到二樓有一自動扶梯,圖2是側(cè)面示意圖.已知自動扶梯AB的坡度為1:2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動扶梯頂端B點(diǎn)正上方的一點(diǎn),BC⊥MN,在自動扶梯底端A處測得C點(diǎn)的仰角為42°,求二樓的層高BC約為多少米?( sin42°≈0.7,tan42°≈0.9)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,小明和小紅要測量小河對岸大樹BC的高度,小紅在點(diǎn)A測得大樹頂端B的仰角為45°,小明從A點(diǎn)出發(fā)沿斜坡走3米到達(dá)斜坡上點(diǎn)D,在此處測得樹頂端點(diǎn)B的仰角為31°,且斜坡AF的坡比為1:2.
(1)求小明從點(diǎn)A到點(diǎn)D的過程中,他上升的高度;
(2)依據(jù)他們測量的數(shù)據(jù)能否求出大樹BC的高度?若能,請計(jì)算;若不能,請說明理由.(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AB=AC,點(diǎn) M 在 BA 的延長線上,點(diǎn) N 在 BC 的延長線上,過點(diǎn) C 作CD∥AB 交∠CAM 的平分線于點(diǎn) D.
(1)如圖 1,求證:四邊形 ABCD 是平行四邊形;
(2)如圖 2,當(dāng)∠ABC=60°時(shí),連接 BD,過點(diǎn) D 作 DE⊥BD,交 BN 于點(diǎn) E,在不添加任何輔助線的情況下,請直接寫出圖 2 中四個(gè)三角形(不包含△CDE),使寫出的每個(gè)三角形的面積與△CDE 的面積相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校八、九兩個(gè)年級各有學(xué)生180人,為了解這兩個(gè)年級學(xué)生的體質(zhì)健康情況,進(jìn)行了抽樣調(diào)查,具體過程如下:
收集數(shù)據(jù)
從八、九兩個(gè)年級各隨機(jī)抽取20名學(xué)生進(jìn)行體質(zhì)健康測試,測試成績(百分制)如下:
八年級 | 78 | 86 | 74 | 81 | 75 | 76 | 87 | 70 | 75 | 90 |
75 | 79 | 81 | 70 | 74 | 80 | 86 | 69 | 83 | 77 | |
九年級 | 93 | 73 | 88 | 81 | 72 | 81 | 94 | 83 | 77 | 83 |
80 | 81 | 70 | 81 | 73 | 78 | 82 | 80 | 70 | 40 |
整理、描述數(shù)據(jù)
將成績按如下分段整理、描述這兩組樣本數(shù)據(jù):
成績(x) | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
八年級人數(shù) | 0 | 0 | 1 | 11 | 7 | 1 |
九年級人數(shù) | 1 | 0 | 0 | 7 | 10 | 2 |
(說明:成績80分及以上為體質(zhì)健康優(yōu)秀,70~79分為體質(zhì)健康良好,60~69分為體質(zhì)健康合格,60分以下為體質(zhì)健康不合格)
分析數(shù)據(jù)
兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如表所示:
年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
八年級 | 78.3 | 77.5 | 75 | 33.6 |
九年級 | 78 | 80.5 | a | 52.1 |
(1)表格中a的值為______;
(2)請你估計(jì)該校九年級體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為多少?
(3)根據(jù)以上信息,你認(rèn)為哪個(gè)年級學(xué)生的體質(zhì)健康情況更好一些?請說明理由.(請從兩個(gè)不同的角度說明推斷的合理性)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com