【題目】如圖是一個(gè)長(zhǎng)為12cm,寬為5cm,高為8cm的長(zhǎng)方體,一只蜘蛛從一條側(cè)棱的中點(diǎn)A沿著長(zhǎng)方體表面爬行到頂點(diǎn)B去捕捉螞蟻,此時(shí)蜘蛛爬行的最短距離是(

A.13 cmB.15 cmC.21 cmD.25cm

【答案】B

【解析】

先將長(zhǎng)方體沿CFFG、GD剪開,向上翻折,使面FCDG和面BDCE在同一個(gè)平面內(nèi),連接AB;或?qū)㈤L(zhǎng)方體沿CD、CF、FG剪開,向右翻折,使面CFGD和面GHBD在同一個(gè)平面內(nèi),連接AB;或?qū)㈤L(zhǎng)方體沿CD、DB、BE剪開,向上翻折,使面DBEC和面CEMF在同一個(gè)平面內(nèi),連接AB,然后分別在RtABE、RtABCRtABD中利用勾股定理求得AB的長(zhǎng),比較大小即可求得需要爬行的最短路程.

將長(zhǎng)方體沿CF、FG、GD剪開,向上翻折,使面FCDG和面BDCE在同一個(gè)平面內(nèi),如圖1,

∴在RtABE中,

將長(zhǎng)方體沿CDCF、FG剪開,向右翻折,使面CFGD和面GHBD在同一個(gè)平面內(nèi),如圖2,

∴在RtABC中,

將長(zhǎng)方體沿CD、DB、BE剪開,向上翻折,使面DBEC和面CEMF在同一個(gè)平面內(nèi),如圖3

∴在RtABD中,

∴蜘蛛爬行的最短距離是15cm

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,PBC上一點(diǎn),DAC上一點(diǎn),且∠APD=60°,BP=1,CD=

(1)求證:△ABP∽△PCD;

(2)求△ABC的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】?h古城是聞名遐邇的歷史文化名城,“元旦”期間相關(guān)部門對(duì)到?h觀光游客的出行方式進(jìn)行了隨機(jī)抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計(jì)圖(尚不完整),根據(jù)圖中的信息,下列結(jié)論錯(cuò)誤的是(

A.此次調(diào)查的總?cè)藬?shù)為5000

B.扇形圖中的10%

C.樣本中選擇公共交通出行的有2500

D.若“元旦”期間到浚縣觀光的游客有5萬(wàn)人,則選擇自駕方式出行的有2.5萬(wàn)人

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)A(1,﹣),點(diǎn)B(﹣2,n)在拋物線y=ax2(a≠0)上.

(1)求a的值與點(diǎn)B的坐標(biāo);

(2)將拋物線y=ax2(a≠0)平移,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B',若四邊形ABB′A′為正方形,求平移后的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)用圖形變換(對(duì)稱、平移或旋轉(zhuǎn))解決下列各題:

1)如圖1,在四邊形ABCD中,ADBC,CDBC,∠ABC60°,AD8,BC12,若P是邊AD上的任意一點(diǎn),則BPC周長(zhǎng)的最小值為 

2)如圖2,已知M01)、P2+3)、Ea,0)、Fa+1,0),問(wèn)a為何值時(shí),四邊形PMEF的周長(zhǎng)最?

3)如圖3P為等邊ABC內(nèi)一點(diǎn),且PB2PC3,∠BPC150°M、N為邊ABAC上的動(dòng)點(diǎn),且AMAN,請(qǐng)直接寫出PM+PN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在扇形MON中,圓心角∠MON=60°,邊長(zhǎng)為2的菱形OABC的頂點(diǎn)A,C,B分別在ON,OM上,且NDAB,交CB的延長(zhǎng)線于點(diǎn)D,則陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中(如圖),拋物線y=ax2-4x軸的負(fù)半軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,AB=2.點(diǎn)P在拋物線上,線段APy軸的正半軸交于點(diǎn)C,線段BPx軸相交于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為m.

1)求這條拋物線的解析式;

2)用含m的代數(shù)式表示線段CO的長(zhǎng);

3)當(dāng)tanODC=時(shí),求∠PAD的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.

(1)求證:OE是CD的垂直平分線.

(2)若∠AOB=60,請(qǐng)你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格,線段AB的端點(diǎn)在格點(diǎn)上.

(1)請(qǐng)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系xOy,使得A點(diǎn)的坐標(biāo)為(-3,-1),在此坐標(biāo)系下,B點(diǎn)的坐標(biāo)為________________;

(2)將線段BA繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得線段BC,畫出BC;在第(1)題的坐標(biāo)系下,C點(diǎn)的坐標(biāo)為__________________

(3)在第(1)題的坐標(biāo)系下,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)OB、C三點(diǎn),則此函數(shù)圖象的對(duì)稱軸方程是________________.

【答案】 (-1,2) (2,0) x=1

【解析】分析:根據(jù)點(diǎn)的坐標(biāo)建立坐標(biāo)系,即可寫出點(diǎn)的坐標(biāo).

畫出點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)連接,寫出點(diǎn)的坐標(biāo).

用待定系數(shù)法求出函數(shù)解析式,即可求出對(duì)稱軸方程.

詳解:(1)建立坐標(biāo)系如圖,

B點(diǎn)的坐標(biāo)為;

(2)線段BC如圖,C點(diǎn)的坐標(biāo)為

(3)把點(diǎn)代入二次函數(shù),得

解得:

二次函數(shù)解析為:

對(duì)稱軸方程為:

故對(duì)稱軸方程是

點(diǎn)睛:考查圖形與坐標(biāo);旋轉(zhuǎn)、對(duì)稱變換;待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的圖象與性質(zhì).熟練掌握各個(gè)知識(shí)點(diǎn)是解題的關(guān)鍵.

型】解答
結(jié)束】
18

【題目】特殊兩位數(shù)乘法的速算——如果兩個(gè)兩位數(shù)的十位數(shù)字相同,個(gè)位數(shù)字相加為10,那么能立說(shuō)出這兩個(gè)兩位數(shù)的乘積.如果這兩個(gè)兩位數(shù)分別寫作ABAC(即十位數(shù)字為A,個(gè)位數(shù)字分別為B、C,B+C=10,A>3),那么它們的乘積是一個(gè)4位數(shù),前兩位數(shù)字是A(A+1)的乘積,后兩位數(shù)字就是BC的乘積.

如:47×43=2021,61×69=4209.

(1)請(qǐng)你直接寫出83×87的值;

(2)設(shè)這兩個(gè)兩位數(shù)的十位數(shù)字為x(x>3),個(gè)位數(shù)字分別為yz(y+z=10),通過(guò)計(jì)算驗(yàn)證這兩個(gè)兩位數(shù)的乘積為100x(x+1)+yz.

(3)99991×99999=___________________(直接填結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案