【題目】如圖,∠MON=90°,已知ABC中,AC=BC=13AB=10,ABC的頂點(diǎn)A、B分別在射線OM、ON上,當(dāng)點(diǎn)BON上運(yùn)動(dòng)時(shí),A隨之在OM上運(yùn)動(dòng),ABC的形狀始終保持不變,在運(yùn)動(dòng)的過(guò)程中,點(diǎn)C到點(diǎn)O的最小距離為____

【答案】7

【解析】

CHABH,連接OH,如圖,根據(jù)等腰三角形的性質(zhì)得AH=BH=AB=5,再利用勾股定理計(jì)算出CH=12,接著根據(jù)直角三角形斜邊上的中線性質(zhì)得OH=AB=5,則利用三角形三邊的關(guān)系得到OC≥CH-OH(當(dāng)點(diǎn)CO、H共線時(shí)取等號(hào)),從而得到點(diǎn)C到點(diǎn)O的最小距離.

CHABH,連接OH,如圖,

AC=BC=13,

AH=BH=AB=5,

RtBCH,

RtAOB,

OH=

OCCHOH(當(dāng)點(diǎn)C.OH共線時(shí)取等號(hào)),

OC的最小值為 CHOH=12-5=7.

故填:7.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】細(xì)心觀察圖形,認(rèn)真分析各式,然后解答問(wèn)題:

OA1=1;  

OA2=;   S1=×1×1=;

OA3=;    S2=××1=

OA4=;    S3=××1=;

(1)推算出OA10=   

(2)若一個(gè)三角形的面積是.則它是第  個(gè)三角形.

(3)用含n(n是正整數(shù))的等式表示上述面積變化規(guī)律;

(4)求出S12+S22+S23+…+S2100的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,點(diǎn)D、點(diǎn)E分別在邊AB、BC上,DE=AE,且∠B=∠C=∠DEA=β。

1)求證:△BDE≌△CEA

2)當(dāng)∠DEB=β 時(shí),

①求 β 的值;

②若將△AEC繞點(diǎn)E順時(shí)針旋轉(zhuǎn),使得∠DEA =90°,如圖2所示,其余條件不變,連結(jié)ABCE的延長(zhǎng)線于F,求證:CF=CA .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為5的正方形ABCD中,以A為一個(gè)頂點(diǎn),另外兩個(gè)頂點(diǎn)在正方形ABCD的邊上,且含邊長(zhǎng)為3的所有大小不同的等腰三角形的個(gè)數(shù)為(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小米利用暑期參加社會(huì)實(shí)踐,在媽媽的幫助下,利用社區(qū)提供的免費(fèi)攤點(diǎn)賣玩具,已知小米所有玩具的進(jìn)價(jià)均2個(gè),在銷售過(guò)程中發(fā)現(xiàn):每天玩具銷售量y件與銷售價(jià)格x件的關(guān)系如圖所示,其中AB段為反比例函數(shù)圖象的一部分,BC段為一次函數(shù)圖象的一部分,設(shè)小米銷售這種玩具的日利潤(rùn)為w元.

根據(jù)圖象,求出yx之間的函數(shù)關(guān)系式;

求出每天銷售這種玩具的利潤(rùn)之間的函數(shù)關(guān)系式,并求每天利潤(rùn)的最大值;

若小米某天將價(jià)格定為超過(guò)4,那么要使得小米在該天的銷售利潤(rùn)不低于54元,求該天玩具銷售價(jià)格的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,點(diǎn)PAC邊上的一點(diǎn),延長(zhǎng)BP至點(diǎn)D,使得AD=AP,當(dāng)ADAB時(shí),過(guò)點(diǎn)DDEACE

(1)求證:∠CBP=ABP;

(2)ABBC=4,AC=8.求AB的長(zhǎng)度和DE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=-2x+4與x軸、y軸分別交于點(diǎn)A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長(zhǎng)方形OABC

(1)求點(diǎn)A、C的坐標(biāo);

(2)將ABC對(duì)折,使得點(diǎn)A的與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式(圖);

(3)在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得APC與ABC全等?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P是正方形ABCD邊AB上一點(diǎn)(不與A,B重合),連接PD并將線段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得線段PE,連接BE,則∠CBE等于( )

A. 75° B. 60° C. 45° D. 30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以正方形ABCD的邊AD作等邊ADE,則∠BEC的度數(shù)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案