【題目】已知,是的直徑,、是上的點(diǎn),連接、、,是的切線,過(guò)點(diǎn)作.
(1)如圖1,求證:;
(2)如圖2,若,連接,延長(zhǎng)交于,連接,若,求的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)如圖1,連接BF,根據(jù)切線的性質(zhì)得到∠ABC=90°,根據(jù)圓周角定理得到∠AFB=90°,推出∠ABF=∠DAF,等量代換即可得到結(jié)論;
(2)如圖2,連接OF,OC,根據(jù)全等三角形的性質(zhì)得到∠OFC=∠ABC=90°,∠BOC=∠FOC,推出∠BAG=∠BOC,得到四邊形ABCD是正方形,于是得到AB=CD,∠D=90°,AB∥CD,根據(jù)全等三角形的性質(zhì)得到AD=BC=4,DG=BO=2,根據(jù)勾股定理得到AG=.
(1)證明:如圖1,連接BF,
∵AB是⊙O的直徑,BC是⊙O的切線,
∴∠ABC=90°,
∵AD∥BC,
∴∠DAB=90°,
∴∠DAF+∠BAF=90°,
∵AB是⊙O的直徑,
∴∠AFB=90°,
∴∠ABF+∠BAF=90°,
∴∠ABF=∠DAF,
∵∠AEF=∠ABF,
∴∠AEF=∠DAF;
(2)解:如圖2,連接OF,OC,
在△CBO與△CFO中,
OB=OF,
BC=FC,
OC=OC,
∴△CBO≌△CFO(SSS),
∴∠OFC=∠ABC=90°,∠BOC=∠FOC,
∵OA=OF,
∴∠OAF=∠OFA,
∵∠OAF=,∠BOC=,
∴∠OAF=∠BOC,
∵AD=BC,AD∥BC,
∴四邊形ABCD是平行四邊形,
∵AB=BC,∠ABC=90°,
∴四邊形ABCD是正方形,
∴AB=CD,∠D=90°,AB∥CD,
∴∠BAG=∠DGA=∠BOC,
在△ADG與△CBO中,
∠ABC=∠D,
∠BOC=∠AGD,
BC=AD,
∴△ADG≌△CBO(AAS),
∴AD=BC=4,DG=BO=2,
∴AG=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB切⊙O于點(diǎn)B,BC∥OA,交⊙O于點(diǎn)C,若∠OAB=30°,BC=6,則劣弧BC的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),沿BA方向以1cm/s的速度向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以AP為一邊向上作正方形APDE,過(guò)點(diǎn)Q作QF∥BC,交AC于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts,正方形和梯形重合部分的面積為Scm2.
(1)當(dāng)t= _________ s時(shí),點(diǎn)P與點(diǎn)Q重合;
(2)當(dāng)t= _________ s時(shí),點(diǎn)D在QF上;
(3)當(dāng)點(diǎn)P在Q,B兩點(diǎn)之間(不包括Q,B兩點(diǎn))時(shí),求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(0,a),B(b,a),且a,b滿足(a﹣3)2+|b﹣6|=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向下平移3個(gè)單位,再向左平移2個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,AB.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點(diǎn)M,連接MC,MD,使S△MCD=S四邊形ABCD?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說(shuō)明理由;
(3)點(diǎn)P是直線BD上的一個(gè)動(dòng)點(diǎn),連接PA,PO,當(dāng)點(diǎn)P在BD上移動(dòng)時(shí)(不與B,D重合),直接寫(xiě)出∠BAP,∠DOP,∠APO之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸的一個(gè)交點(diǎn)為,與軸的交點(diǎn)在點(diǎn)與點(diǎn)之間(包含端點(diǎn)),頂點(diǎn)的坐標(biāo)為。則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù),總成立;④關(guān)于的方程沒(méi)有實(shí)數(shù)根。其中結(jié)論正確的個(gè)數(shù)為()
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在由邊長(zhǎng)都為1的小正方形組成的網(wǎng)格中,點(diǎn)均為格點(diǎn).
(Ⅰ)線段的長(zhǎng)度等于______;
(Ⅱ)若為線段上一點(diǎn),且滿足,請(qǐng)你借助無(wú)刻度直尺在給定的網(wǎng)格中面出滿足條件的線段,并簡(jiǎn)要說(shuō)明你是怎么畫(huà)出點(diǎn)______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某河堤的橫斷面是梯形ABCD,BC∥AD,BE⊥AD于點(diǎn)E,AB=50米,BC=30米,∠A=60°,∠D=30°.求AD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為紀(jì)念建國(guó)70周年,某校舉行班級(jí)歌詠比賽,歌曲有:《我愛(ài)你,中國(guó)》,《歌唱祖國(guó)》,《我和我的祖國(guó)》(分別用字母A,B,C依次表示這三首歌曲).比賽時(shí),將A,B,C這三個(gè)字母分別寫(xiě)在3張無(wú)差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長(zhǎng)先從中隨機(jī)抽取一張卡片,放回后洗勻,再由八(2)班班長(zhǎng)從中隨機(jī)抽取一張卡片,進(jìn)行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國(guó)》的概率是__________;
(2)試用畫(huà)樹(shù)狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+m與雙曲線y=相交于A(2,1),B兩點(diǎn).
(1)求出一次函數(shù)與反比例函數(shù)的解析式,并求出B點(diǎn)坐標(biāo);
(2)若P為直線x=上一點(diǎn),當(dāng)△APB的面積為6時(shí),請(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com