【題目】如圖,長4m的樓梯AB的傾斜角∠ABD為60°,為了改善樓梯的安全性能,準(zhǔn)備重新建造樓梯,使其傾斜角∠ACD為45°,則調(diào)整后的樓梯AC的長為( 。

A.2 m
B.2 m
C.(2 ﹣2)m
D.(2 ﹣2)m

【答案】B
【解析】解:在Rt△ABD中,∵sin∠ABD= , ∴AD=4sin60°=2 (m),在Rt△ACD中,∵sin∠ACD= ,∴AC= =2 (m).
故選B.
先在Rt△ABD中利用正弦的定義計算出AD,然后在Rt△ACD中利用正弦的定義計算AC即可.本題考查了解直角三角形的應(yīng)用﹣坡度坡角:坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式.把坡面與水平面的夾角α叫做坡角,坡度i與坡角α之間的關(guān)系為:i=tanα.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由若干個棱長為1cm的完全相同的小正方體組成的一個幾何體.

(1)請畫出這個幾何體的三視圖;

(2)在露出的表面上涂上顏色(不含底面),則涂上顏色部分的總面積為 cm2

(3)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的三視圖不變,那么最多可以再添加______個小正方體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是(  )

A.a>0
B.c<0
C.3是方程ax2+bx+c=0的一個根
D.當(dāng)x<1時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB130°,∠COD80°OM,ON分別是∠AOB和∠COD的平分線.

(1)如果OA,OC重合,且OD在∠AOB的內(nèi)部,如圖1,求∠MON的度數(shù);

(2)如果將圖1中的∠COD繞點O點順時針旋轉(zhuǎn)n°(0n155),如圖2

①∠MON與旋轉(zhuǎn)度數(shù)有怎樣的數(shù)量關(guān)系?說明理由;

②當(dāng)n為多少時,∠MON為直角?

(3)如果∠AOB的位置和大小不變,∠COD的邊OD的位置不變,改變∠COD的大。粚D1中的OC繞著O點順時針旋轉(zhuǎn)m°(0m100),如圖3,∠MON與旋轉(zhuǎn)度數(shù)有怎樣的數(shù)量關(guān)系?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF= ∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分別是AD、CD的中點,連接BE、BF、EF.若四邊形ABCD的面積為6,則△BEF的面積為( 。
A.2
B.
C.
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計算

(1﹣)×(1+)=   ,1﹣(2=   ; 有(1﹣)×(1+   1﹣(2 (用“=”“<”“>”填空).

(1﹣)×(1+)=   ,1﹣(2=   ; 有(1﹣)×(1+   1﹣(2 (用“=”“<”“>”填空).

③猜測(1﹣)(1+)與1﹣(2 有關(guān)系:(1﹣)(1+   1﹣(2.(用“=”“<”“>”填空)

(2)計算:[1﹣(2]×[1﹣(2]×[1﹣(2]×…×[1﹣(2]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c為三角形三個邊, +bxx-1)= -2b是關(guān)于x的一元二次方程嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上A、B兩點對應(yīng)的數(shù)為0、10,P為數(shù)軸上一點

(1)點PAB線段的中點,點P對應(yīng)的數(shù)為   

(2)數(shù)軸上有點P,使PA,B的距離之和為20,點P對應(yīng)的數(shù)為   

(3)若點P點表示6,點M以每秒鐘5個單位的速度從A點向右運動,點N以每秒鐘1個單位的速度從B點向右運動,t秒后有PM=PN,求時間t的值(畫圖寫過程).

查看答案和解析>>

同步練習(xí)冊答案