【題目】某小龍蝦養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢(shì),一次性收購(gòu)了20000kg小龍蝦,計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng)10天的總成本為30.4萬(wàn)元;放養(yǎng)20天的總成本為30.8萬(wàn)元(總成本=放養(yǎng)總費(fèi)用+收購(gòu)成本).
(1)設(shè)每天的放養(yǎng)費(fèi)用是a萬(wàn)元,收購(gòu)成本為b萬(wàn)元,求a和b的值;
(2)設(shè)這批小龍蝦放養(yǎng)t天后的質(zhì)量為m(kg),銷售單價(jià)為y元/kg.根據(jù)以往經(jīng)驗(yàn)可知:m與t的函數(shù)關(guān)系為;y與t的函數(shù)關(guān)系如圖所示.
①分別求出當(dāng)0≤t≤50和50<t≤100時(shí),y與t的函數(shù)關(guān)系式;
②設(shè)將這批小龍蝦放養(yǎng)t天后一次性出售所得利潤(rùn)為W元,求當(dāng)t為何值時(shí),W最大?并求出最大值.(利潤(rùn)=銷售總額﹣總成本)
【答案】(1)a的值為0.04,b的值為30;(2)①當(dāng)0≤t≤50時(shí),,當(dāng)50<t≤100時(shí),;(3)放養(yǎng)55天時(shí),W最大,最大值為180250元.
【解析】
(1)由放養(yǎng)10天的總成本為30.4萬(wàn)元;放養(yǎng)20天的總成本為30.8萬(wàn)元可得答案;
(2)①分0≤t≤50、50<t≤100兩種情況,結(jié)合函數(shù)圖象利用待定系數(shù)法求解可得;
②就以上兩種情況,根據(jù)“利潤(rùn)=銷售總額-總成本”列出函數(shù)解析式,依據(jù)一次函數(shù)性質(zhì)和二次函數(shù)性質(zhì)求得最大值即可得.
(1)由題意,得:,解得:.
答:a的值為0.04,b的值為30.
(2)①當(dāng)0≤t≤50時(shí),設(shè)y與t的函數(shù)解析式為,將(0,15)、(50,25)代入,得:,解得:,∴y與t的函數(shù)解析式為
當(dāng)50<t≤100時(shí),設(shè)y與t的函數(shù)解析式為,將點(diǎn)(50,25)、(100,20)代入,得:,解得:,∴y與t的函數(shù)解析式為
②由題意,當(dāng)0≤t≤50時(shí),W=20000(t+15)﹣(400t+300000)=3600t.
∵3600>0,∴當(dāng)t=50時(shí),W最大值=180000(元);
當(dāng)50<t≤100時(shí),W=(100t+15000)(﹣t+30)﹣(400t+300000)
=﹣10t2+1100t+150000=﹣10(t﹣55)2+180250.
∵﹣10<0,∴當(dāng)t=55時(shí),W最大值=180250(元).
綜上所述:放養(yǎng)55天時(shí),W最大,最大值為180250元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程 kx2+(2k+1)x+k+2=0.
(1)若該方程有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍;
(2)若該方程的兩根x1、x2滿足=-3,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D是等邊三角形ABC的邊BC上一點(diǎn),以AD為邊作等邊△ADE,連接CE.
(1)求證:;
(2)若∠BAD=20°,求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠ABC=45°,AB≠BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D.
(1)如圖1,作∠ADB的角平分線DF交BE于點(diǎn)F,連接AF.求證:∠FAB=∠FBA;
(2)如圖2,連接DE,點(diǎn)G與點(diǎn)D關(guān)于直線AC對(duì)稱,連接DG、EG
①依據(jù)題意補(bǔ)全圖形;
②用等式表示線段AE、BE、DG之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),以原點(diǎn)O為圓心,1為半徑作圓,點(diǎn)P在直線上運(yùn)動(dòng),過(guò)點(diǎn)P作該圓的一條切線,切點(diǎn)為A,則PA的最小值為
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為菱形,以AD為直徑作⊙O交AB于點(diǎn)F,連接DB交⊙O于點(diǎn)H,E是BC上的一點(diǎn),且BE=BF,連接DE.
(1)求證:DE是⊙O的切線.
(2)若BF=2,BD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次籃球比賽中,如圖隊(duì)員甲正在投籃.已知球出手時(shí)離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時(shí)達(dá)到最大高度4 m,設(shè)籃球運(yùn)行軌跡為拋物線,籃圈距地面3 m.
(1)建立如圖所示的平面直角坐標(biāo)系,問(wèn)此球能否準(zhǔn)確投中?
(2)此時(shí),對(duì)方隊(duì)員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于拋物線,下列說(shuō)法中錯(cuò)誤的是( )
A.y的最小值為1
B.圖象頂點(diǎn)坐標(biāo)為(2,1),對(duì)稱軸為直線x=2
C.當(dāng)x<2時(shí),y的值隨x值的增大而增大,當(dāng)x>2時(shí),y的值隨x值的增大而減小
D.它的圖象可以由的圖象向右平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度得到
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com