【題目】合肥合家福超市為了吸引顧客,設(shè)計了一種促銷活動:在三等分的轉(zhuǎn)盤上依次標(biāo)有,字樣,購物每滿200元可以轉(zhuǎn)動轉(zhuǎn)盤1次,轉(zhuǎn)盤停下后,指針?biāo)竻^(qū)域是時,便可得到30元購物券(指針落在分界線上不計次數(shù),可重新轉(zhuǎn)動一次),一個顧客剛好消費400元,并參加促銷活動,轉(zhuǎn)了2次轉(zhuǎn)盤.

1)求出該顧客可能獲得購物券的最高金額和最低金額;

2)請用畫樹狀圖法或列表法求出該顧客獲購物券金額不低于30元的概率.

【答案】1)最高金額為60元、最低金額為0元;(2

【解析】

1)兩次都抽到時可得最高金額,兩次都沒有抽到時可得最低金額;

2)畫出樹狀圖,利用概率公式計算即可;

解:(1)根據(jù)題意,該顧客可能獲得購物券的最高金額為60元、最低金額為0元;

2)畫樹狀圖如下:

由樹狀圖知,共有9種等可能結(jié)果,其中該顧客獲購物券金額不低于30元的有5種結(jié)果,

所以該顧客獲購物券金額不低于30元的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條拋物線與x軸相交于M,N兩點(M在點N的左側(cè)),其頂點P在線段AB上移動,點AB的坐標(biāo)分別為(-2,-3),(1,-3),點N的橫坐標(biāo)的最大值為4,則點M的橫坐標(biāo)的最小值為( )

A.-1 B.-3C.-5D.-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小星同學(xué)設(shè)計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:

已知:如圖,直線l和直線l外一點A

求作:直線AP,使得APl

作法:如圖

在直線l上任取一點BABl不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C

連接AC,AB,延長BA到點D;

作∠DAC的平分線AP

所以直線AP就是所求作的直線

根據(jù)小星同學(xué)設(shè)計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡)

2)完成下面的證明

證明:∵ABAC,

∴∠ABC=∠ACB   (填推理的依據(jù))

∵∠DAC是△ABC的外角,

∴∠DAC=∠ABC+ACB   (填推理的依據(jù))

∴∠DAC2ABC

AP平分∠DAC

∴∠DAC2DAP

∴∠DAP=∠ABC

APl   (填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點,,點軸上點右側(cè)一點,以,為兩邊的菱形的頂點落在反比例函數(shù)的圖象上.

1)求反比例函數(shù)的表達(dá)式;

2)過點軸的垂線,交反比例函數(shù)的圖象于點,連接,,求的面積:

3)當(dāng)時,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級6班的一個互助學(xué)習(xí)小組組長收集并整理了組員們討論如下問題時所需的條件.如圖所示,在四邊形中,點分別在邊上,____________________.求證:四邊形是平行四邊形.你能在橫線上填上最少且簡捷的條件使結(jié)論成立嗎?條件分別是:;②;③;④四邊形是平行四邊形,其中A、B、CD四位同學(xué)所填條件符合題目要求的是( 。

A.①②B.①②③C.①④D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,的中點為圓心,作半圓與相切,點分別是半圓和邊上的動點,連接的最大值與最小值的和是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形中,上從運動,連接連接

1)證明:無論運動到上的何處,都有

2)當(dāng)運動到何處時,?

3)若再從,在整個運動過程中,為多少時,是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文具店有三種品牌的6個筆記本,價格是45,7(單位:元)三種,從中隨機拿出一個本,已知(一次拿到7元本)

1)求這6個本價格的眾數(shù).

2)若琪琪已拿走一個7元本,嘉嘉準(zhǔn)備從剩余5個本中隨機拿一個本.

①所剩的5個本價格的中位數(shù)與原來6個本價格的中位數(shù)是否相同?并簡要說明理由;

②嘉嘉先隨機拿出一個本后不放回,之后又隨機從剩余的本中拿一個本,用列表法求嘉嘉兩次都拿到7元本的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】游樂園新建的一種新型水上滑道如圖,其中線段表示距離水面(x軸)高度為5m的平臺(點Py軸上).滑道可以看作反比例函數(shù)圖象的一部分,滑道可以看作是二次函數(shù)圖象的一部分,兩滑道的連接點B為二次函數(shù)的頂點,且點B到水面的距離,點By軸的距離是5m.當(dāng)小明從上而下滑到點C時,與水面的距離,與點B的水平距離.

1)求反比例函數(shù)的關(guān)系式及其自變量的取值范圍;

2)求整條滑道的水平距離;

3)若小明站在平臺上相距y的點M處,用水槍朝正前方向下“掃射”,水槍出水口N距離平臺,噴出的水流成拋物線形,設(shè)這條拋物線的二次項系數(shù)為p,若水流最終落在滑道上(包括B、D兩點),直接寫出p的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案