【題目】如圖,平面直角坐標系中,已知點A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是ABC的邊AC上任意一點,ABC經(jīng)過平移后得到A1B1C1,點P的對應點為P1(a+6,b﹣2).

(1)平移后的三個頂點坐標分別為:.A1( ),B1( ),C1( ).

(2)在上圖中畫出平移后三角形A1B1C1;

(3)畫出AOA1并求出AOA1的面積.

【答案】(1)A1 (3,1)B1 (1,-1)C1(4,﹣2);(2)見解析;(3)6.

【解析】分析:1)根據(jù)點P、P1的坐標確定出平移規(guī)律,再求出A1、B1、C1的坐標即可;

2)根據(jù)網(wǎng)格結構找出點A、B、C平移后的對應點A1、B1C1的位置,然后順次連接即可

3)利用△AOA1所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.

詳解:(1∵點Pab)的對應點為P1a+6,b2),∴平移規(guī)律為向右6個單位,向下2個單位A(﹣3,3),B(﹣5,1),C(﹣2,0)的對應點的坐標為A13,1),B11,﹣1),C14,﹣2);

2A1B1C1如圖所示;

3AOA1的面積=6×3×3×3×3×1×6×2=186=1812=6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點P(x21,﹣2)所在的象限是(  )

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,BD是對角線,AE⊥BD于點E,CF⊥BD于點F,試判斷四邊形AECF是不是平行四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解題:

定義:如果一個數(shù)的平方等于-1,記為,這個數(shù)叫做虛數(shù)單位。那么和我們所學的實數(shù)對應起來就叫做復數(shù),表示為, 為實數(shù)),叫這個復數(shù)的實部, 叫做這個復數(shù)的虛部,它的加,減,乘法運算與整式的加,減,乘法運算類似。

例如計算:

1)填空: =_________, =____________;

2)計算:

3計算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請把下面證明過程補充完整:

已知:如圖,∠ADC=∠ABC,BE、DF分別平分∠ABC、ADC,且∠1=∠2

求證:∠A=∠C

證明:∵BE、DF分別平分∠ABCADC(已知),

∴∠1=ABC,3=ADC(角平分線定義)

∵∠ABC=∠ADC(已知),

∴∠1=∠3(等量代換)

∵∠1=∠2(已知),

∴∠2=∠3(等量代換)

∴_____∥_____ (___ __)

∴∠A+∠_____=180°,C+∠_____=180°(___ __)

∴∠A=∠C(___ __)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場要經(jīng)營一種新上市的文具,進價為20元/件.試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件;銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤w(元)與銷售單價x(元)之間的函數(shù)關系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結合上述情況,提出了A、B兩種營銷方案: 方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:如圖1,ABCD,PAB=130°,PCD=120°.求APC度數(shù).

小明的解題思路是:如圖2,過P作PEAB,通過平行線性質,可得APC=50°+60°=110°.

問題遷移:

(1)如圖3,ADBC,點P在射線OM上運動,當點P在A、B兩點之間運動時,ADP=α,BCP=β.試判斷CPD、α、β之間有何數(shù)量關系?請說明理由;

(2)在(1)的條件下,如果點P在A、B兩點外側運動時(點P與點A、B、O三點不重合),請你直接寫出CPD、α、β間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx的圖像如圖,若一元二次方程ax2+bx+m=0有實數(shù)根,則m的最大值為(
A.﹣3
B.3
C.﹣6
D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC的角平分線,DEAB于點E,DFAC于點F,連接EFAD于點G

1)求證:AD垂直平分EF;

2)若BAC=60°,猜測DGAG間有何數(shù)量關系?請說明理由.

查看答案和解析>>

同步練習冊答案