【題目】某市為創(chuàng)建省衛(wèi)生城市,有關(guān)部門決定利用現(xiàn)有的4200盆甲種花卉和3090盆乙種花卉,搭配A、B兩種園藝造型共60個,擺放于入城大道的兩側(cè),搭配每個造型所需花卉數(shù)量的情況下表所示,結(jié)合上述信息,解答下列問題:

造型花卉

A

80

40

B

50

70


(1)符合題意的搭配方案有幾種?
(2)如果搭配一個A種造型的成本為1000元,搭配一個B種造型的成本為1500元,試說明選用那種方案成本最低?最低成本為多少元?

【答案】
(1)解:設(shè)需要搭配x個A種造型,則需要搭配B種造型(60﹣x)個,

則有 ,

解得37≤x≤40,

所以x=37或38或39或40.

第一種方案:A種造型37個,B種造型23個;

第二種方案:A種造型38個,B種造型22個;

第三種方案:A種造型39個,B種造型21個.

第四種方案:A種造型40個,B種造型20個


(2)解:分別計算四種方案的成本為:

①37×1000+23×1500=71500元,

②38×1000+22×1500=71000元,

③39×1000+21×1500=70500元,

④40×1000+20×1500=70000元.

通過比較可知第④種方案成本最低.

答:選擇第四種方案成本最低,最低為70000元


【解析】(1)設(shè)需要搭配x個A種造型,則需要搭配B種造型(60﹣x)個,根據(jù)“4200盆甲種花卉”“3090盆乙種花卉”列不等式求解,取整數(shù)值即可.(2)計算出每種方案的花費,然后即可判斷出答案.
【考點精析】根據(jù)題目的已知條件,利用一元一次不等式組的應(yīng)用的相關(guān)知識可以得到問題的答案,需要掌握1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.

(1)甲、乙兩種書柜每個的價格分別是多少元?

(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請設(shè)計出所有購買方案供這個學(xué)校選擇.

(3)試說明在(2)中哪種方案費用最低?最低費用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.

(1)求購買A型和B型公交車每輛各需多少萬元?

(2)預(yù)計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?

(3)在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,AD平分∠BAC交BC于點D,BC的中點為M,ME∥AD,交BA的延長線于點E,交AC于點F.

(1)求證:AE=AF;

(2)求證:BE=(AB+AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種圓環(huán)(如圖),它的外圓直徑是8厘米,環(huán)寬1厘米.

①如果把這樣的2個圓環(huán)扣在一起并拉緊(如圖2),長度為___________厘米;

②如果用x個這樣的圓環(huán)相扣并拉緊,長度為y厘米,則yx之間的關(guān)系式是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 的周長為36,對角線AC,BD相交于點O,點ECD的中點,BD=12,求△DOE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,E是BD上的一點,∠BAE=∠BCE,∠AED=∠CED,點G是BC、AE延長線的交點,AG與CD相交于點F.
(1)求證:四邊形ABCD是正方形;
(2)當(dāng)AE=2EF時,判斷FG與EF有何數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,∠C=90°,tanA= ,D是AC上一點,∠CBD=∠A,則sin∠ABD=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果把一個自然數(shù)各數(shù)位上的數(shù)字從最高位到個位依次排出的一串?dāng)?shù)字,與從個位到最高位依次排出的一串?dāng)?shù)字完全相同,那么我們把這樣的自然數(shù)稱為和諧數(shù).例如:自然數(shù)12321,從最高位到個位排出的一串?dāng)?shù)字是:1,23,21,從個位到最高排出的一串?dāng)?shù)字仍是:1,2,32,1,因此12321是一個和諧數(shù).再如:22,5453883,34543,,都是和諧數(shù)

1)請你直接寫出3個四位和諧數(shù);請你猜想任意一個四位和諧數(shù)能否被11整除,并說明理由;

2)已知一個能被11整除的三位和諧數(shù),設(shè)其個位上的數(shù)字為x,x為自然數(shù)),十位上的數(shù)字為y,求yx的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案