精英家教網 > 初中數學 > 題目詳情

【題目】如圖,港口A在觀測站O的正東方向,OA=4km , 某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為km

【答案】2 ?
【解析】如圖,過點AADOB于D.

RtAOD中,∵∠ADO=90°,∠AOD=30°,OA=4km ,
AD= OA=2km
RtABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,
BD=AD=2km ,
AB= AD=2 km
即該船航行的距離(即AB的長)為2 km
故答案為2 km
過點AADOB于D.先解RtAOD , 得出AD= OA=2km , 再由△ABD是等腰直角三角形,得出BD=AD=2km , 則AB= AD=2 km

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=x2﹣bx+c經過A(0,3),B(1,0)兩點,頂點為M.
(1)則b= , c=
(2)將△OAB繞點B順時針旋轉90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經過點C,求平移后所得拋物線的表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】△ABC中,AB=CB,∠ABC=90°,F(xiàn)AB延長線上一點,點EBC上,且AE=CF.

(1)求證:△ABE≌△CBF;

(2)若∠CAE=25°,求∠BFC度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在課題學習后,同學們?yōu)榻淌掖皯粼O計一個遮陽蓬,小明同學繪制的設計圖如圖所示,其中,AB表示窗戶,且AB=2.82米,△BCD表示直角遮陽蓬,已知當地一年中在午時的太陽光與水平線CD的最小夾角α為18°,最大夾角β為66°,根據以上數據,計算出遮陽蓬中CD的長是(結果精確到0.1)(參考數據:sin18°≈0.31,tan18°≈0.32,sin66°≈0.91,tan66°≈2.2)(  )

A.1.2米
B.1.5米
C.1.9米
D.2.5米

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進40海里到達B點,此時,測得海島C位于北偏東30°的方向,則海里C到航線AB的距離CD是( 。

A.20海里
B.40海里
C.20 海里
D.40 海里

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點EEF⊥DE,交BC的延長線于點F.

1)求∠F的度數;

2)若CD=2,求DF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在下列條件中,不能作為判斷ABD≌△BAC的條件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,∠A=90°,BC∥AD,AB=6cm,點P從A出發(fā)沿射線AD運動,速度是每秒1cm,點R從點B出發(fā)沿射線BC運動,速度是每秒2cm,點Q在點P的右側,且PQ=10cm,時間為t秒;

求:(1)△PQR的面積;

(2)當t=1秒時,求PR的長;

(3)當t為何值時,△PQR是等腰三角形?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列命題,真命題是(
A.如圖,如果OP平分∠AOB,那么,PA=PB
B.三角形的一個外角大于它的一個內角
C.如果兩條直線沒有公共點,那么這兩條直線互相平行
D.有一組鄰邊相等的矩形是正方形

查看答案和解析>>

同步練習冊答案