在日常生活中,觀察各種建筑物的地板,你就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案,也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內(nèi)角大小有關(guān),當(dāng)圍繞一點(diǎn)拼在一起的多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.
(1)如圖1,請根據(jù)下列圖形,填寫表中空格:
正多邊形邊數(shù) |
3 |
4 |
5 |
6 |
… |
|
正多邊形每個內(nèi)角的度數(shù) |
|
|
|
|
|
|
(2)如果限于一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形?
(3)從正三角形、正方形、正六邊形中選一種,再在其它正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成一個平面圖,并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.
(1)60°,90°,108°,120°,(2)正三角形、正方形、正六邊形;(3)答案不唯一,如正方形和正八邊形,正三角形和正十二邊形.
【解析】本題主要考查了平面鑲嵌(密鋪).(1)利用正多邊形一個內(nèi)角=180- 求解;
(2)進(jìn)行平面鑲嵌就是在同一頂點(diǎn)處的幾個多邊形的內(nèi)角和應(yīng)為360°,因此我們只需驗(yàn)證360°是不是上面所給的幾個正多邊形的一個內(nèi)角度數(shù)的整數(shù)倍;
(3)常見的兩種正多邊形的密鋪組合有:正三角形和正四邊形能密鋪,正六邊形只能和正三角形密鋪.所以要從正三角形、正四邊形、正六邊形中選一種,只能選擇正四邊形.
解:(1)由正n邊形的內(nèi)角的性質(zhì)可分別求得正三角形、正方形、正五邊形、正六邊形、…、正n邊形的每一個內(nèi)角為:
60°,90°,108°,120°,…;
(2)如限于用一種正多邊形鑲嵌,則由一頂點(diǎn)的周圍角的和等于360°得正三角形、正四邊形(或正方形)、正六邊形都能鑲嵌成一個平面圖形;
(3)如:正方形和正八邊形(如圖),
設(shè)在一個頂點(diǎn)周圍有m個正方形的角,n個正八邊形的角,
那么m,n應(yīng)是方程m•90°+n•135°=360°的正整數(shù)解.
即2m+3n=8的正整數(shù)解,只有m=1,n=2一組,
∴符合條件的圖形只有一種.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
正多邊形邊數(shù) | 3 | 4 | 5 | 6 | … | n |
正多邊形每個內(nèi)角的度數(shù) | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:同步題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2005年廣東省深圳市羅湖區(qū)東湖中學(xué)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題
正多邊形邊數(shù) | 3 | 4 | 5 | 6 | … | n |
正多邊形每個內(nèi)角的度數(shù) | ______ | ______ | ______ | ______ | … | ______ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com