【題目】如圖,在△ABC中,AB=BC,D、E、F分別是BC、AC、AB邊上的中點(diǎn).
(1)求證:四邊形BDEF是菱形;
(2)若AB=12cm,求菱形BDEF的周長(zhǎng).

【答案】
(1)證明:∵D、E、F分別是BC、AC、AB的中點(diǎn),

∴DE∥AB,EF∥BC,

∴四邊形BDEF是平行四邊形,

又∵DE= AB,EF= BC,且AB=BC,

∴DE=EF,

∴四邊形BDEF是菱形


(2)解:∵AB=12cm,F(xiàn)為AB中點(diǎn),

∴BF=6cm,

∴菱形BDEF的周長(zhǎng)為6×4=24cm


【解析】(1)可根據(jù)菱形的定義“一組鄰邊相等的平行四邊形是菱形”,先證明四邊形BFED是平行四邊形,然后再證明四邊形的鄰邊相等即可.(2)F是AB的中點(diǎn),有了AB的長(zhǎng)也就求出了菱形的邊長(zhǎng)BF的長(zhǎng),那么菱形BDEF的周長(zhǎng)也就能求出了.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個(gè),食堂師傅在窗口隨機(jī)發(fā)放(發(fā)放的食品價(jià)格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.

(1)按約定,“小李同學(xué)在該天早餐得到兩個(gè)油餅”是 事件;(可能,必然,不可能)

(2)請(qǐng)用列表或樹(shù)狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)A(2,n)在x軸上,則點(diǎn)B(n+2,n-5)在(  )

A. 第一象限 B. 第二象限

C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P1(a,3)和P2(4,b)關(guān)于y軸對(duì)稱(chēng),則(ab)2017的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點(diǎn),O是形內(nèi)一點(diǎn),若四邊形AEOH、四邊形BFOE、四邊形CGOF的面積分別為6、7、8,四邊形DHOG面積為(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:

四邊形CFHE是菱形;

EC平分DCH;

線段BF的取值范圍為3BF4;

當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2

以上結(jié)論中,你認(rèn)為正確的有( )個(gè).

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,把EFP放置在菱形ABCD中,使得頂點(diǎn)E,F(xiàn),P分別在線段AB,AD,AC上,已知EP=FP=6,EF=,BAD=60°,且AB>

EPF的大;

AP=8,求AE+AF的值;

EFP的三個(gè)頂點(diǎn)EF,P分別在線段ABAD,AC上運(yùn)動(dòng),請(qǐng)直接寫(xiě)出AP長(zhǎng)的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,矩形ABCD中,AB=4cm,AD=2AB,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.

(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長(zhǎng);
(2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周,即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過(guò)程中,
①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒.當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值;
②若點(diǎn)P、Q的速度分別為v1、v2(cm/s),點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,試探究a與b滿(mǎn)足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c圖象上部分點(diǎn)的坐標(biāo)滿(mǎn)足下表:

x

﹣3

﹣2

﹣1

0

1

y

﹣3

﹣2

﹣3

﹣6

﹣11

則該函數(shù)圖象的頂點(diǎn)坐標(biāo)為(
A.(﹣3,﹣3)
B.(﹣2,﹣2)
C.(﹣1,﹣3)
D.(0,﹣6)

查看答案和解析>>

同步練習(xí)冊(cè)答案