【題目】如圖,AB∥CD,AD∥BC,∠A﹦3∠B.求∠A、∠B、∠C、∠D的度數.
【答案】1350,450,1350,450
【解析】
根據AD∥BC,∠A=3∠B,
可得:∠A+∠B=180°,即4∠B=180°,解得∠B=45°,進而可得:∠A=3∠B=3×45°=135°,
再根據AB∥CD,可得:∠A+∠D=180°,∠B+∠C=180°,進而可得:∠D=180°-∠A=180°-135°=45°,∠C=180°-∠B=180°-45°=135°.
∵AD∥BC,∠A=3∠B,
∴∠A+∠B=180°,即4∠B=180°,解得∠B=45°,
∴∠A=3∠B=3×45°=135°,
∵AB∥CD,
∴∠A+∠D=180°,∠B+∠C=180°,
∴∠D=180°-∠A=180°-135°=45°,∠C=180°-∠B=180°-45°=135°,
答:∠A、∠B、∠C、∠D的度數分別為:135°,45°,135°,45°.
科目:初中數學 來源: 題型:
【題目】(1)機械廠加工車間有85名工人,平均每人每天加工大齒輪16個或小齒輪10個,已知2個大齒輪與3個小齒輪配成一套,問需分別安排多少名工人加工大、小齒輪,才能使每天加工的大小齒輪剛好配套?
(2)某蔬菜公司的一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1000元,經粗加工后銷售,每噸利潤可達4500元,經精加工后銷售,每噸利潤漲至7500元,當地一家公司收購這種蔬菜140噸,該公司的加工生產能力是:如果對蔬菜進行粗加工,每天可加工16噸,如果進行精加工,每天可加工6噸,但兩種加工方式不能同時進行,受季節(jié)等條件限制,公司必須在15天將這批蔬菜全部銷售或加工完畢,為此公司研制了三種可行方案:
方案一:將蔬菜全部進行粗加工.
方案二:盡可能多地對蔬菜進行精加工,沒來得及進行加工的蔬菜,在市場上直接銷售.
方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好15天完成.
你認為哪種方案獲利最多?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電腦店有A、B兩種型號的打印機和C、D、E三種芯片出售.每種型號的打印機均需要一種芯片配套才能打印.
(1)下列是該店用樹形圖或列表設計的配套方案,①的位置應填寫 , ②的位置應 填寫
(2)若僅有B型打印機與E種芯片不配套,則上面(1)中的方案配套成功率是
芯片 | C | D | E |
A | (A,C) | (A,D) | ② |
B | (B,C) | (B,D) | (B,E) |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,直線EF經過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=ADAB;
(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】骰子是一種特別的數字立方體(如圖),它符合規(guī)則:相對兩面的點數之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是一塊破損的木板.
(1)請你設計一種方案,檢驗木板的兩條直線邊緣 AB、CD 是否平行;
(2)若 AB∥CD,連接 BC,過點 A 作 AM⊥BC 于 M,垂足為 M,畫出圖形,并寫出∠BCD 與∠BAM 的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦.
(1)請你按下面步驟畫圖(畫圖或作輔助線時先使用鉛筆畫出,確定后必須使用黑色字跡的簽字筆描黑); 第一步,過點A作∠BAC的角平分線,交⊙O于點D;
第二步,過點D作AC的垂線,交AC的延長線于點E.
第三步,連接BD.
(2)求證:AD2=AEAB;
(3)連接EO,交AD于點F,若5AC=3AB,求 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在下列多項式的乘法中,不能用平方差公式計算的是( )
A. (a+b)(a-b) B. (x-2y)(-x+2y) C. (x-2y)(-x-2y) D. (x-y)(y+0.5x)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在數軸上點A表示的有理數為﹣6,點B表示的有理數為6,點P從點A出發(fā)以每秒4個單位長度的速度在數軸上由A向B運動,當點P到達點B后立即返回,仍然以每秒4個單位長度的速度運動至點A停止運動,設運動時間為t(單位:秒).
(1)求t=1時點P表示的有理數;
(2)求點P與點B重合時的t值;
(3)在點P沿數軸由點A到點B再回到點A的運動過程中,求點P與點A的距離(用含t的代數式表示);
(4)當點P表示的有理數與原點的距離是2個單位長度時,請求出所有滿足條件的t值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com