【題目】某水果公司新購(gòu)進(jìn)10000千克柑橘,每千克柑橘的成本為9. 柑橘在運(yùn)輸、存儲(chǔ)過程中會(huì)有損壞,銷售人員從所有的柑橘中隨機(jī)抽取若干柑橘,進(jìn)行柑橘損壞率統(tǒng)計(jì),并把獲得的數(shù)據(jù)記錄如下:

柑橘總重量n/千克

50

100

150

200

250

300

350

400

450

500

損壞柑橘重量m/千克

5.50

10.50

15.15

19.42

24.25

30.93

35.32

39.24

44.57

51.54

柑橘損壞的頻率

0.110

0.105

0.101

0.097

0.097

0.103

0.101

0.098

0.099

0.103

根據(jù)以上數(shù)據(jù),估計(jì)柑橘損壞的概率為 (結(jié)果保留小數(shù)點(diǎn)后一位);由此可知,去掉損壞的柑橘后,水果公司為了不虧本,完好柑橘每千克的售價(jià)至少為________.

【答案】

【解析】

根據(jù)題目損壞的頻率數(shù)據(jù),結(jié)合題目結(jié)果保留小數(shù)點(diǎn)后一位,即可得出第一空答案;設(shè)每千克的售價(jià)為x元,根據(jù)題目列一元一次不等式即可得出第二空答案.

根據(jù)題目損壞的頻率數(shù)據(jù)可知,損壞的頻率再0.1左右范圍內(nèi)浮動(dòng),結(jié)合題目結(jié)果保留小數(shù)點(diǎn)后一位,得到柑橘損壞的概率為0.1;

設(shè)每千克的售價(jià)為x元,因?yàn)槔麧?rùn)=總售價(jià)-總進(jìn)價(jià),所以根據(jù)題目列一元一次不等式:,

解得,

故每千克的售價(jià)至少為10元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年植樹節(jié)這一天,某校組織300名七年級(jí)學(xué)生,200名八年級(jí)學(xué)生,100名九年級(jí)學(xué)生參加義務(wù)植樹活動(dòng).圖甲是根據(jù)植樹情況繪制成的條形統(tǒng)計(jì)圖.

請(qǐng)根據(jù)題中提供的信息解答下列問題.

(1)參加植樹的學(xué)生平均每人植樹多少棵?

(2)2是小明同學(xué)尚未完成的各年級(jí)植樹情況的扇形統(tǒng)計(jì)圖,請(qǐng)你把它補(bǔ)充完整(要求標(biāo)注圓心角度數(shù));

(3)若該種樹苗在正常情況下的成活率為85%,則今后還需補(bǔ)種多少棵樹?(補(bǔ)種樹苗的成活率也為85%)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知半圓O的直徑AB4,沿它的一條弦折疊.若折疊后的圓弧與直徑AB相切于點(diǎn)D,且ADDB31,則折痕EF的長(zhǎng)______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,BCAC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DEAC,垂足為點(diǎn)E

1)求證:點(diǎn)DAB的中點(diǎn);

2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;

3)若⊙O的直徑為10,tanB3,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是﹣2,

求:(1)一次函數(shù)的解析式;

(2)△AOB的面積;

(3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yx22mx+m21y軸交于點(diǎn)C

1)試用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);

2)將拋物線yx22mx+m21沿直線y=﹣1翻折,得到的新拋物線與y軸交于點(diǎn)D,若m0,CD8,求m的值.

3)已知A(﹣k+4,1),B1,k2),在(2)的條件下,當(dāng)線段AB與拋物線yx22mx+m21只有一個(gè)公共點(diǎn)時(shí),請(qǐng)求出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,OAC的中點(diǎn),直線EF經(jīng)過點(diǎn)O,并且與AB交于點(diǎn)E,與DC交于點(diǎn)F,∠DFE=BFE

1)求證:四邊形DEBF是菱形;

2)若AD=4,AB=8,則線段EF的長(zhǎng)是_______(直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)以每件10元的價(jià)格購(gòu)進(jìn)一種商品,試銷中發(fā)現(xiàn),這種商品每天的銷售量m(件)與每件的銷售價(jià)x(元)滿足一次函數(shù),其函數(shù)圖像如圖所示.

1)求商場(chǎng)每天銷售這種商品的銷售利潤(rùn)y(元)與每件的銷售價(jià)x(元)之間的函數(shù)解析式;

2)試判斷,每件商品的銷售價(jià)格在什么范圍內(nèi),每天的銷售利潤(rùn)隨著價(jià)格的提高而增加.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把兩條中線互相垂直的三角形稱為中垂三角形.例如圖1,圖2,圖3中,的中線,,垂足為.像這樣的三角形均為中垂三角形.設(shè),,

特例探索:

1)①如圖1,當(dāng)時(shí),_________________;

②如圖2,當(dāng),時(shí),求的值.

歸納證明:

2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想三者之間的關(guān)系,用等式表示出來,并利用圖3證明你發(fā)現(xiàn)的關(guān)系式.

3)利用(2)中的結(jié)論,解答下列問題:在邊長(zhǎng)為3的菱形中,為對(duì)角線的交點(diǎn),分別為線段,的中點(diǎn),連接,并延長(zhǎng)交于點(diǎn),,分別交于點(diǎn),,如圖4所示,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案