【題目】如圖,在矩形ABCD中,BC=8,AB=6,經(jīng)過點B和點D的兩個動圓均與AC相切,且與AB、BC、AD、DC分別交于點G、H、E、F,則EF+GH的最小值是( )
A.6 B.8 C.9.6 D.10
【答案】C
【解析】
試題分析:如圖,設(shè)GH的中點為O,過O點作OM⊥AC,過B點作BN⊥AC,垂足分別為M、N,根據(jù)∠B=90°可知,點O為過B點的圓的圓心,OM為⊙O的半徑,BO+OM為直徑,可知BO+OM≥BN,故當(dāng)BN為直徑時,直徑的值最小,即直徑GH也最小,同理可得EF的最小值.
解:如圖,設(shè)GH的中點為O,
過O點作OM⊥AC,過B點作BN⊥AC,垂足分別為M、N,
在Rt△ABC中,BC=8,AB=6,
∴AC==10,
由面積法可知,BNAC=ABBC,
解得BN=4.8,
∵∠B=90°,
∴GH為⊙O的直徑,點O為過B點的圓的圓心,
∵⊙O與AC相切,
∴OM為⊙O的半徑,
∴BO+OM為直徑,
又∵BO+OM≥BN,
∴當(dāng)BN為直徑時,直徑的值最小,
此時,直徑GH=BN=4.8,
同理可得:EF的最小值為4.8,
∴EF+GH的最小值是9.6.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,∠BAD=∠EBC,AD交BE于F.
(1)試說明 : ∠ABC=∠BFD ;
(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點.
(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x=2時,代數(shù)式ax3+bx+1的值為6,那么當(dāng)x=﹣2時,這個代數(shù)式的值是( )
A. 1 B. -6 C. 3 D. -4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,∠1=∠2,∠3=∠4,試說明的道理,以下是說明道理的過程,請將其填寫完整,并在括號內(nèi)填出所得結(jié)論的理由。
∵∠1=∠2(已知),
=∠1 ( ),
∴=∠2 (等量代換),
∴ ( ),
∴= ( ),
∵∠3=∠4(已知)
∴-∠4= -∠3 (等式的基本性質(zhì)),
即∠( )=
∴ ( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com