【題目】如圖,已知一次函數(shù)y=x﹣3與反比例函數(shù)y=的圖象相交于點(diǎn)A(4,n),與x軸相交于點(diǎn)B.

(1)填空:n的值為____,k的值為______;

(2)AB為邊作菱形ABCD,使點(diǎn)Cx軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);

(3)觀察反比例函數(shù)y=的圖象當(dāng)y≥﹣3時(shí),請直接寫出自變量x的取值范圍.

【答案】(1)3;12;(2)點(diǎn)D的坐標(biāo)為(4+,3);(3)x≤﹣4x>0.

【解析】

(1)把點(diǎn)A(4,n)代入一次函數(shù)y=x-3,得到n的值為3;再把點(diǎn)A(4,3)代入反比例函數(shù)y=,得到k的值為12;

(2)根據(jù)坐標(biāo)軸上點(diǎn)的坐標(biāo)特征可得點(diǎn)B的坐標(biāo)為(2,0),過點(diǎn)AAEx軸,垂足為E,過點(diǎn)DDFx軸,垂足為F,根據(jù)勾股定理得到AB=,根據(jù)AAS可得ABE≌△DCF,根據(jù)菱形的性質(zhì)和全等三角形的性質(zhì)可得點(diǎn)D的坐標(biāo);

(3)根據(jù)反比例函數(shù)的性質(zhì)即可得到當(dāng)y≥-3時(shí),自變量x的取值范圍.

解:(1)把點(diǎn)A(4,n)代入一次函數(shù)y=x﹣3,

可得n=×4﹣3=3;

把點(diǎn)A(4,3)代入反比例函數(shù)y=

可得3

解得k=12.

故答案為:3,12.

(2)∵一次函數(shù)y=x﹣3x軸相交于點(diǎn)B,

x﹣3=0,

解得x=2,

∴點(diǎn)B的坐標(biāo)為(2,0),

如圖,過點(diǎn)AAEx軸,垂足為E,

過點(diǎn)DDFx軸,垂足為F,

A(4,3),B(2,0),

OE=4,AE=3,OB=2,

BE=OE﹣OB=4﹣2=2,

RtABE中,

AB,

∵四邊形ABCD是菱形,

AB=CD=BC=,ABCD,

∴∠ABE=DCF,

AEx軸,DFx軸,

∴∠AEB=DFC=90°,

在△ABE與△DCF中,

∴△ABE≌△DCF(ASA),

CF=BE=2,DF=AE=3,

OF=OB+BC+CF=2++2=4+

∴點(diǎn)D的坐標(biāo)為(4+,3).

3)當(dāng)y=﹣3時(shí),﹣3

解得x=﹣4.

故當(dāng)y≥﹣3時(shí),自變量x的取值范圍是x≤﹣4x>0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動物學(xué)家通過大量的調(diào)查估計(jì)出,某種動物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動物活到25歲的概率為多少?現(xiàn)年25歲的這種動物活到30歲的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為Q(2,﹣1),且與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)P是拋物線上的一動點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(點(diǎn)PA不重合),過點(diǎn)PPDy軸,交AC于點(diǎn) D.

(1)求該拋物線的函數(shù)關(guān)系式及A、B兩點(diǎn)的坐標(biāo);

(2)求點(diǎn)P在運(yùn)動的過程中,線段PD的最大值;

(3)若點(diǎn)P與點(diǎn)Q重合,點(diǎn)Ex軸上,點(diǎn)F在拋物線上,問是否存在以A,P,E,F(xiàn)為頂點(diǎn)的平行四邊形?若存在,直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥AC交AC的延長線于點(diǎn)E.

(1)求證:DE是⊙O的切線.

(2)求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠B=60°,BC=6,EBC中點(diǎn),FAB上一點(diǎn),GAD上一點(diǎn),且BF=2,FEG=60°,EGAC于點(diǎn)H,下列結(jié)論①△BEF∽△CHE;AG=1;EH=;SBEF=3SAGH;正確的是______.(填序號即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸交與A(1,0),B(- 3,0)兩點(diǎn).

⑴求該拋物線的解析式;

⑵設(shè)⑴中的拋物線交y軸與C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使得QAC的周長最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.

⑶在拋物線上BC段是否存在點(diǎn)P,使得PBC面積最大,若存在,求P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,取一根9.5 m長的標(biāo)桿AB,在其上系一活動旗幟C,使標(biāo)桿的影子落在平地和一堤壩的左斜坡上拉動旗幟使其影子正好落在斜坡底角頂點(diǎn)D若測得旗高BC=4.5 m,影長BD=9 m,影長DE=5 m,請計(jì)算左斜坡的坡比(假設(shè)標(biāo)桿的影子BD,DE均與壩底線DM垂直).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程中,無論a取何值時(shí),總是關(guān)于x的一元二次方程的是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校研究學(xué)生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運(yùn)動、娛樂、上網(wǎng)等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息解答下列問題:

(1)在這次調(diào)查中,一共調(diào)查了   名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有1500名學(xué)生,估計(jì)愛好運(yùn)動的學(xué)生有   人;

(4)在全校同學(xué)中隨機(jī)選取一名學(xué)生參加演講比賽,用頻率估計(jì)概率,則選出的恰好是愛好閱讀的學(xué)生的概率是   

查看答案和解析>>

同步練習(xí)冊答案