今年,6月12日為端午節(jié)。在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況。請根據(jù)小麗提供的信息,解答小華和小明提出的問題。
(1)小華的問題解答:應(yīng)定價(jià)4元/個(gè),才可獲得800元的利潤,詳見解析;(2)小明的問題解答:800元不是最大利潤.當(dāng)定價(jià)為4.8元/個(gè)時(shí),每天利潤最大,詳見解析.

試題分析:(1)小華的問題要用一元二次方程來解決,解答的關(guān)鍵是弄清:設(shè)實(shí)現(xiàn)每天800元利潤的定價(jià)為x元/個(gè)時(shí),每一個(gè)粽子的利潤為(x-2)元,一共能賣(500-×10)個(gè)粽子,根據(jù)題意列方程得:(x-2)(500-×10)=800,解得x1=4,x2=6,還應(yīng)根據(jù)實(shí)際問題確定兩個(gè)值是否都滿足條件,本題因物價(jià)局規(guī)定,售價(jià)不能超過進(jìn)價(jià)的240%,即2×240%=4.8(元),所以x2=6不合題意,舍去,得x=4;
(2)小明的問題要利用二次函數(shù)的增減性來解決,解答時(shí)要注意自變量x的取值范圍:x≤4.8 .
試題解析:(1)小華的問題解答:
解:設(shè)實(shí)現(xiàn)每天800元利潤的定價(jià)為x元/個(gè),根據(jù)題意,得
(x-2)(500-×10)="800" .
整理得:x2-10x+24=0.
解之得:x1=4,x2=6.
∵物價(jià)局規(guī)定,售價(jià)不能超過進(jìn)價(jià)的240%,即2×240%=4.8(元).
∴x2=6不合題意,舍去,得x=4.
答:應(yīng)定價(jià)4元/個(gè),才可獲得800元的利潤.
(2)小明問題的解決:
解:設(shè)每天利潤為W元,定價(jià)為x元/個(gè),得
W=(x-2)(500-×10)
=-100x2+1000x-1600
=-100(x-5)2+900.
∵x≤5時(shí)W隨x的增大而增大,且x≤4.8,
∴當(dāng)x="4.8" 時(shí),W最大,
W最大=-100×(4.8-5)2+900=896>800 .
故800元不是最大利潤.當(dāng)定價(jià)為4.8元/個(gè)時(shí),每天利潤最大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象以為頂點(diǎn),且過點(diǎn)
(1)求該二次函數(shù)的解析式;
(2)求該二次函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一條拋物線(m<0)與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).若點(diǎn)M、N的坐標(biāo)分別為(0,—2)、(4,0),拋物線與直線MN始終有交點(diǎn),線段AB的長度的最小值為            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線(b,c是常數(shù),且c<0)與x軸分別交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的負(fù)半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-1,0).

(1)b=    ,點(diǎn)B的橫坐標(biāo)為    (上述結(jié)果均用含c的代數(shù)式表示);
(2)連接BC,過點(diǎn)A作直線AE∥BC,與拋物線交于點(diǎn)E.點(diǎn)D是x軸上一點(diǎn),其坐標(biāo)為
(2,0),當(dāng)C,D,E三點(diǎn)在同一直線上時(shí),求拋物線的解析式;
(3)在(2)的條件下,點(diǎn)P是x軸下方的拋物線上的一動(dòng)點(diǎn),連接PB,PC,設(shè)所得△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有    個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,平面之間坐標(biāo)系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動(dòng),點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=4,經(jīng)過O,C兩點(diǎn)做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點(diǎn)E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點(diǎn)A的坐標(biāo)及k的值:A     ,k=     ;
(2)隨著三角板的滑動(dòng),當(dāng)a=時(shí):
①請你驗(yàn)證:拋物線的頂點(diǎn)在函數(shù)的圖象上;
②當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時(shí),求t的值;
(3)直線OA與拋物線的另一個(gè)交點(diǎn)為點(diǎn)D,當(dāng)t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當(dāng)x≥t+4時(shí),|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若關(guān)于x函數(shù)的圖像與x軸有唯一公共點(diǎn),則=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如下圖是一副眼鏡鏡片下半部分輪廓對應(yīng)的兩條拋物線關(guān)于軸對稱.軸,,最低點(diǎn)軸上,高,則右輪廓線所在拋物線的函數(shù)解析式為(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,二次函數(shù)的圖象開口向上,對稱軸為直線x=1,圖象經(jīng)過(3,0),下列結(jié)論中,正確的一項(xiàng)是【   】
A.a(chǎn)bc<0B.2a+b<0C.a(chǎn)-b+c<0D.4ac-b2<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,BC=3,AB=5.點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長度沿B→C→A→B的方向運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位沿C→A→B方向的運(yùn)動(dòng),到達(dá)點(diǎn)B后立即原速返回,若P、Q兩點(diǎn)同時(shí)運(yùn)動(dòng),相遇后同時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t=     時(shí),點(diǎn)P與點(diǎn)Q相遇;
(2)在點(diǎn)P從點(diǎn)B到點(diǎn)C的運(yùn)動(dòng)過程中,當(dāng)ι為何值時(shí),△PCQ為等腰三角形?
(3)在點(diǎn)Q從點(diǎn)B返回點(diǎn)A的運(yùn)動(dòng)過程中,設(shè)△PCQ的面積為s平方單位.
①求s與ι之間的函數(shù)關(guān)系式;
②當(dāng)s最大時(shí),過點(diǎn)P作直線交AB于點(diǎn)D,將△ABC中沿直線PD折疊,使點(diǎn)A落在直線PC上,求折疊后的
△APD與△PCQ重疊部分的面積.

查看答案和解析>>

同步練習(xí)冊答案