【題目】教育部基礎(chǔ)教育司負(fù)責(zé)人解讀“2020新中考時(shí)強(qiáng)調(diào)要注重學(xué)生分析與解決問題的能力,要增強(qiáng)學(xué)生的創(chuàng)新精神和綜合素質(zhì).王老師想嘗試改變教學(xué)方法,將以往教會(huì)學(xué)生做題改為引導(dǎo)學(xué)生會(huì)學(xué)習(xí).于是她在菱形的學(xué)習(xí)中,引導(dǎo)同學(xué)們解決菱形中的一個(gè)問題時(shí),采用了以下過程(請(qǐng)解決王老師提出的問題):

先出示問題(1:如圖1,在等邊三角形中,上一點(diǎn),上一點(diǎn),如果,連接,相交于點(diǎn),求的度數(shù).

通過學(xué)習(xí),王老師請(qǐng)同學(xué)們說說自己的收獲.小明說發(fā)現(xiàn)一個(gè)結(jié)論:在這個(gè)等邊三角形中,只要滿足,則的度數(shù)就是一個(gè)定值,不會(huì)發(fā)生改變.緊接著王老師出示了問題(2:如圖2,在菱形中,上一點(diǎn),上一點(diǎn),,連接、,、相交于點(diǎn),如果,,求出菱形的邊長(zhǎng).

問題(3):通過以上的學(xué)習(xí)請(qǐng)寫出你得到的啟示(一條即可).

【答案】(1);(2);(3)答案不唯一,合理即可

【解析】

問題(1)根據(jù)是等邊三角形證明,得出,再根據(jù)三角形外角性質(zhì)即可得證;

問題(2)作于點(diǎn),根據(jù)四邊形是菱形得出,在中利用三角函數(shù)即可求得,,最后根據(jù)勾股定理得出答案.

問題(3)從個(gè)人的積累和心得寫一句話即可.

問題(1)∵是等邊三角形,

,.

,

.

,

,

問題(2)如圖,作于點(diǎn)

∵四邊形是菱形,

,

是等邊三角形,

.

由(1)可知,

中,

,即,

,

,即,

.

中,

由勾股定理可得,

,

∴菱形的邊長(zhǎng)為.

問題(3)如平時(shí)應(yīng)該注意基本圖形的積累,在學(xué)習(xí)過程中做個(gè)有心人等,言之有理即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,∠B=90°,AB=1CD=2,BC=m,點(diǎn)P是邊BC上一動(dòng)點(diǎn),若△PAB與△PCD相似,且滿足條件的點(diǎn)P恰有2個(gè),則m的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

)已知,若二次函數(shù)圖象與軸有唯一公共點(diǎn),求的值;

)已知

)當(dāng)時(shí),二次函數(shù)圖象與軸有且只有一個(gè)公共點(diǎn),求的取值范圍;

)當(dāng)時(shí),有最小值,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家在購(gòu)進(jìn)一款產(chǎn)品時(shí),由于運(yùn)輸成本及產(chǎn)品成本的提高,該產(chǎn)品第天的成本(元/件)與(天)之間的關(guān)系如圖所示,并連續(xù)50天均以80/件的價(jià)格出售,第天該產(chǎn)品的銷售量(件)與(天)滿足關(guān)系式

1)第40天,該商家獲得的利潤(rùn)是______元;

2)設(shè)第天該商家出售該產(chǎn)品的利潤(rùn)為元.

①求之間的函數(shù)關(guān)系式,并指出第幾天的利潤(rùn)最大,最大利潤(rùn)是多少?

②在出售該產(chǎn)品的過程中,當(dāng)天利潤(rùn)不低于1000元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC沿射線BC平移得到ABC,使得點(diǎn)A落在∠ABC的平分線BD上,連接AA,AC

1)判斷四邊形ABBA的形狀,并證明;

2)在ABC中,AB6,BC4,若ACAB,求四邊形ABBA的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小明設(shè)計(jì)的“作三角形的高線”的尺規(guī)作圖過程.

已知:△ABC

求作:BC邊上的高線.

作法:如圖,

①分別以A,B為圓心,大于長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)DE

②作直線DE,與AB交于點(diǎn)F,以點(diǎn)F為圓心,FA長(zhǎng)為半徑畫圓,交CB的延長(zhǎng)線于點(diǎn)G;

③連接AG

所以線段AG就是所求作的BC邊上的高線.

根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面證明.

證明:連接DADB,EAEB

DA=DB,

∴點(diǎn)D在線段AB的垂直平分線上( )(填推理的依據(jù)).

= ,

∴點(diǎn)E在線段AB的垂直平分線上.

DE是線段AB的垂直平分線.

FA=FB

AB是⊙F的直徑.

∴∠AGB=90°( )(填推理的依據(jù)).

AGBC

AG就是BC邊上的高線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線ymx2+2mx3m0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,該拋物線的頂點(diǎn)D的縱坐標(biāo)是﹣4

1)求點(diǎn)A、B的坐標(biāo);

2)設(shè)直線與直線AC關(guān)于該拋物線的對(duì)稱軸對(duì)稱,求直線的表達(dá)式;

3)平行于x軸的直線b與拋物線交于點(diǎn)Mx1,y1)、Nx2,y2),與直線交于點(diǎn)Px3,y3).若x1x3x2,結(jié)合函數(shù)圖象,求x1+x2+x3的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點(diǎn)E,F分別在AB,CD上,且,連接EFBD于點(diǎn)O連接AO.,,則的度數(shù)為(

A.50°B.55°C.65°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為3正方形的頂點(diǎn)與原點(diǎn)重合,點(diǎn)軸,軸上。反比例函數(shù)的圖象交于點(diǎn),連接,.

1)求反比例函數(shù)的解析式;

2)過點(diǎn)軸的平行線,點(diǎn)在直線上運(yùn)動(dòng),點(diǎn)軸上運(yùn)動(dòng).

是以為直角頂點(diǎn)的等腰直角三角形,求的面積;

“①”中的為直角頂點(diǎn)的去掉,將問題改為是等腰直角三角形的面積除了“①”中求得的結(jié)果外,還可以是______.(直接寫答案,不用寫步驟)

查看答案和解析>>

同步練習(xí)冊(cè)答案