【題目】已知等腰三角形ABC中,ABAC,∠ABC40°P為直線BC上一點,PBAB,則∠PAC_____°

【答案】30°120°

【解析】

分當(dāng)P點在線段BC上和當(dāng)PCB的延長線上兩種情況討論,根據(jù)等腰三角形等邊對等角,三角形內(nèi)角和定理和三角形外角定理去求∠PAC的度數(shù).

解:如下圖,當(dāng)P點在線段BC上時,

AB=AC,∠ABC=40°
∴∠C=B=40°,
∴∠BAC=100°,
BP=AB

∴∠PAC=BAC -=30°,

如下圖,當(dāng)PCB的延長線上時,

AB=AC,∠ABC=40°,
∴∠C=ABC =40°,
∴∠BAC=100°
BP=AB,

∴∠PAC=BAC +=120°
綜上所述:∠PAC的度數(shù)為30°120°

故答案為:30°120°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(30),B(0,-1),連接AB,B點作AB的垂線段,使BA=BC,連接AC.

(1)如圖1,求C點坐標(biāo);

(2)如圖2,P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形BPQ,連接CQ.求證:PA=CQ.

(3)(2)的條件下,C、PQ三點共線,求此時P點坐標(biāo)及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBCEAB的中點,連接DE并延長交CB的延長線于點F,點G在邊BC上,且∠GDF=∠ADF

1)求證:△ADE≌△BFE

2)連接EG,判斷EGDF的位置關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC的平分線AD和邊BC的垂直平分線ED相交于點D,過點DDF垂直于ACAC的延長線于點F,若AB8AC5,則CF=(  )

A.1.5B.2C.2.5D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC=90°,BDAC邊上的中線.

(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標(biāo)注相應(yīng)的字母:過點C作直線CE,使CEBC于點C,交BD的延長線于點E,連接AE;

(2)求證:四邊形ABCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點D,過點DDEAC,垂足為E,過點EEFAB,垂足為F,連接FD.

(1)求證:DE是⊙O的切線;

(2)EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某茶葉公司經(jīng)銷一種茶葉,每千克成本為元,市場調(diào)查發(fā)現(xiàn)在一段時間內(nèi),銷量(千克)隨銷售單價(元/千克)的變化而變化,具有關(guān)系為:,物價部門規(guī)定每千克的利潤不得超過元.設(shè)這種茶葉在這段時間內(nèi)的銷售利潤(元),解答下列問題:

的關(guān)系式;

當(dāng)取何值時,的值最大?并求出最大值;

當(dāng)銷售利潤的值最大時,銷售額也是最大嗎?判斷并說明理由.

查看答案和解析>>

同步練習(xí)冊答案