【題目】如圖數(shù)軸上A、B、C三點對應的數(shù)分別是a、b、7,滿足OA=3,BC=1,P為數(shù)軸上一動點,點P從A出發(fā),沿數(shù)軸正方向以每秒1.5個單位長度的速度勻速運動,點Q從點C出發(fā)在射線CA上向點A勻速運動,且P、Q兩點同時出發(fā).
(1)求a、b的值
(2)當P運動到線段OB的中點時,點Q運動的位置恰好是線段AB靠近點B的三等分點,求點Q的運動速度
(3)當P、Q兩點間的距離是6個單位長度時,求OP的長.
【答案】(1)-3,6;(2)點Q的運動速度每秒1個單位長度;(3)OP的長為0.6或6.6.
【解析】
(1)由點C表示7,可得OC=7,由OA=3,BC=1,得A、B兩點表示的數(shù),可得a、b的值;
(2)先計算P運動時間,根據(jù)點Q運動的位置恰好是線段AB靠近點B的三等分點,可知:BQ=AB,可得點Q的路程,根據(jù)時間可得結論;
(3)設t秒時,PQ=6,分兩種情況:①如圖1,當Q在P的右側時,②如圖2,當Q在P的左側時;根據(jù)PQ=6分別列式可得t的值,再計算OP的長.
(1)∵OA=3,
∴點A表示的數(shù)為﹣3,即a=﹣3,
∵C表示的數(shù)為7,
∴OC=7,
∵BC=1,
∴OB=6,
∴點B表示的數(shù)為6,即b=6;
(2)當P為OB的中點時,
AP=AO+OP=3+OB=3+3=6,
t==4(s),
由題意得:BQ=AB=×(3+6)=3,
∴CQ=BQ+BC=1+3=4,
∴VQ==1,
答:點Q的運動速度每秒1個單位長度;
(3)設t秒時,PQ=6,
分兩種情況:
①如圖1,當Q在P的右側時,
AP+PQ+CQ=3+7,
1.5t+6+t=3+7,
t=1.6,
AP=1.5t=2.4,
∴OP=3﹣2.4=0.6,
②如圖2,當Q在P的左側時,
AP+CQ=AC+PQ=10+6,
1.5t+t=16,
t=6.4,
AP=1.5t=1.5×6.4=9.6,
∴OP=9.6﹣3=6.6,
綜上所述,OP的長為0.6或6.6.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論中正確的是( 。
A.a>0
B.c<0
C.3是方程ax2+bx+c=0的一個根
D.當x<1時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算
①(1﹣)×(1+)= ,1﹣()2= ; 有(1﹣)×(1+) 1﹣()2 (用“=”“<”“>”填空).
②(1﹣)×(1+)= ,1﹣()2= ; 有(1﹣)×(1+) 1﹣()2 (用“=”“<”“>”填空).
③猜測(1﹣)(1+)與1﹣()2 有關系:(1﹣)(1+) 1﹣()2.(用“=”“<”“>”填空)
(2)計算:[1﹣()2]×[1﹣()2]×[1﹣()2]×…×[1﹣()2]
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜經營戶從蔬菜批發(fā)市場批發(fā)蔬菜進行零售,部分蔬菜批發(fā)價格與零售價格如表:
蔬菜品種 | 西紅柿 | 青椒 | 西蘭花 | 豆角 |
批發(fā)價(元/kg) | 3.6 | 5.4 | 8 | 4.8 |
零售價(元/噸) | 5.4 | 8.4 | 14 | 7.6 |
請解答下列問題:
(1)第一天,該經營戶批發(fā)西紅柿和西蘭花兩種蔬菜共300 kg,用去了1520元錢,這兩種蔬菜當天全部售完一共能賺多少元錢?
(2)第二天,該經營戶用1520元錢仍然批發(fā)西紅柿和西蘭花,要想當天全部售完后賺錢數(shù)1050元,則該經營戶批發(fā)西紅柿多少千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=k1x+b與x軸,y軸相交于P,Q兩點,則y= 的圖象相交于A(﹣2,m),B(1,n)兩點,連接OA,OB,給出下列結論:①k1k2<0;②m+ n=0;③S△AOP=S△BOQ;④不等式k1x+b> 的解集在x<﹣2或0<x<1,其中正確的結論是( )
A.②③④
B.①②③④
C.③④
D.②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上A、B兩點對應的數(shù)為0、10,P為數(shù)軸上一點
(1)點P為AB線段的中點,點P對應的數(shù)為 .
(2)數(shù)軸上有點P,使P到A,B的距離之和為20,點P對應的數(shù)為 .
(3)若點P點表示6,點M以每秒鐘5個單位的速度從A點向右運動,點N以每秒鐘1個單位的速度從B點向右運動,t秒后有PM=PN,求時間t的值(畫圖寫過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖△ABC為等邊三角形,直線a∥AB,D為直線BC上一點,∠ADE交直線a于點E,且∠ADE=60°.
(1)若D在BC上(如圖1)求證CD+CE=CA;
(2)若D在CB延長線上,CD、CE、CA存在怎樣數(shù)量關系,給出你的結論并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com