【題目】如圖,是☉O的直徑,點(diǎn)在☉O上,過點(diǎn)C的切線與AB的延長線交于點(diǎn)P,連接AC,過點(diǎn)O作OD⊥AC交☉O于點(diǎn)D,連接CD.若∠A=30°,PC=6,則CD的長為
A. B. C. 3D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于A(2,﹣1)、B(,n)兩點(diǎn).直線y=2與y軸交于點(diǎn)C.
1)求一次函數(shù)與反比例函數(shù)的解析式;
2)求△ABC的面積;
3)直接寫出不等式kx+b>在如圖所示范圍內(nèi)的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長,交AB的延長線于點(diǎn)E,連接BD、EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠BOD=100°,則當(dāng)∠A= 時(shí),四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,過點(diǎn)O作OD⊥CB,垂足為點(diǎn)D,延長DO交⊙O于點(diǎn)E,過點(diǎn)E作PE⊥AB,垂足為點(diǎn)P,作射線DP交CA的延長線于F點(diǎn),連接EF,
(1)求證:OD=OP;(2)求證:FE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,AD是弦,∠ADE = 60°,∠C = 30°.
⑴判斷直線CD是否是⊙O的切線,并說明理由;
⑵若CD = ,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為矩形邊上一點(diǎn),連接,將沿翻折得到,過點(diǎn)作FG⊥BC于點(diǎn)G,若AB=4,FG=1,則AE的長度為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有2個(gè)實(shí)數(shù)根,且其中一個(gè)實(shí)數(shù)根是另一個(gè)實(shí)數(shù)根的3倍,則稱該方程為“立根方程”.
(1)方程x2﹣4x+3=0 立根方程,方程x2﹣2x﹣3=0 立根方程;(請?zhí)?/span>“是”或“不是”)
(2)請證明:當(dāng)點(diǎn)(m,n)在反比例函數(shù)y上時(shí),關(guān)于x的一元二次方程mx2+4x+n=0是立根方程;
(3)若方程ax2+bx+c=0是立根方程,且兩點(diǎn)P(3,2)、Q(6,2)均在二次函數(shù)y=ax2+bx+c上,求方程ax2+bx+c=0的兩個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個(gè)矩形花圃,如圖所示.
(1)能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.
(2)若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)與一次函數(shù)y=kx+b(k≠0)交于點(diǎn)A(﹣1,6)、B(n,2).
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)若點(diǎn)A關(guān)于y軸的對稱點(diǎn)為A′,連接AA′,BA′,求△AA′B的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com