【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的頂點都在正方形網(wǎng)格的格點(網(wǎng)格線的交點)上.

1)畫出△ABC先向右平移5個單位長度,再向上平移2個單位長度所得的△A1B1C1

2)畫出△ABC的中線AD;

3)畫出△ABC的高CE所在直線,標出垂足E

4)在(1)的條件下,線段AA1CC1的關系是

【答案】1)見解析;(2)見解析;(3)見解析;(4)平行且相等

【解析】

1)利用網(wǎng)格特點和平移的性質畫出A、BC的對應點A1、B1、C1即可;

2)根據(jù)三角形中線的定義畫出圖形即可;

3)根據(jù)三角形高的定義畫出圖形即可;

4)根據(jù)平移的性質即可得出結論.

解:(1)如圖,△A1B1C1即為所作圖形;

2)如圖,線段AD即為所作圖形;

3)如圖,直線CE即為所作圖形;

4)∵△A1B1C1是由△ABC平移得到,

AA1CC1是對應點,

AA1CC1的關系是:平行且相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,點PAD邊上以每秒1cm的速度從點A向點D運動,點QBC邊上,以每秒4cm的速度從點C出發(fā),在CB間往返運動,兩個點同時出發(fā),當點P到達點D時停止(同時點Q也停止),在這段時間內(nèi),線段PQ有(。┐纹叫杏AB?

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:用2A型車和1B型車載滿貨物一次可運貨10噸;用1A型車和2B型車載滿貨物一次可運貨11噸,某物流公司現(xiàn)有26噸貨物,計劃A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.

根據(jù)以上信息,解答下列問題:

11A型車和1輛車B型車都載滿貨物一次可分別運貨多少噸?

2)請你幫該物流公司設計租車方案;

3)若A型車每輛需租金100/次,B型車每輛需租金120/次.請選出最省錢車方案,并求出最少租車費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD.

(1)作圖,作∠A的平分線AE交CD于點E(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,判斷△AED的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若△ABC內(nèi)有一個點P1,當P1、A、BC沒有任何三點在同一直線上時,如圖1,可構成3個互不重疊的小三角形;若△ABC內(nèi)有兩個點P1、P2,其它條件不變,如圖2,可構成5個互不重疊的小三角形:……若△ABC內(nèi)有n個點,其它條件不變,則構成若干個互不重疊的小三角形,這些小三角形的內(nèi)角和為()

A.n·180°B.n+2·180°C.2n-1·180°D.2n+1·180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某集團購買了150噸物資打算運往某地支援,現(xiàn)有甲、乙、丙三種車型供選擇,每輛汽車的運載能力和運費如下表所示:(假設每輛車均滿載)

車型

汽車運載量(噸/輛)

5

8

10

汽車運費(元/輛)

1000

1200

1500

1)若全部物資都用甲、乙兩種車型來運送,需運費24000元,問分別需甲、乙兩種車型各多少輛?

2)若該集團決定用甲、乙、丙三種汽車共18輛同時參與運送,請你寫出可能的運送方案,并幫助該集團找出運費最省的方案(甲、乙、丙三種車輛均要參與運送).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將正方形ABCD的邊AB沿AE折疊,使點B落在對角線AC上,則∠BAE的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的頂點坐標分別為A-3,5),B-2,1),C-1,3).

1)將ABC向右平移3個單位得到A1B1C1,請畫出平移后的A1B1C1;

2)將A1B1C1沿x軸翻折得到A2B2C2,請畫出翻折后的A2B2C2;

3)若點Pmn)是ABC內(nèi)一點,點QA2B2C2內(nèi)與點P對應的點,則點Q坐標______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在矩形ABCD中,對角線ACBD相交于點O,過點O作直線EFBD,且交AD于點E,交BC于點F,連接BEDF,且BE平分∠ABD

①求證:四邊形BFDE是菱形;

②直接寫出∠EBF的度數(shù).

2)把(1)中菱形BFDE進行分離研究,如圖2,GI分別在BF,BE邊上,且BGBI,連接GDHGD的中點,連接FH,并延長FHED于點J,連接IJIH,IFIG.試探究線段IHFH之間滿足的關系,并說明理由;

3)把(1)中矩形ABCD進行特殊化探究,如圖3,矩形ABCD滿足ABAD時,點E是對角線AC上一點,連接DE,作EFDE,垂足為點E,交AB于點F,連接DF,交AC于點G.請直接寫出線段AG,GE,EC三者之間滿足的數(shù)量關系.

查看答案和解析>>

同步練習冊答案