【題目】如圖,在直角△ABC中,∠C=90°,DE垂直平分AB,交BC于點(diǎn)D、交AB于點(diǎn)E.
(1)若AD平分∠CAB,則∠B的度數(shù)是 度;
(2)若AB=10,△ACD的周長為14,求△ACB的周長.
【答案】(1)∠B的度數(shù)是 30 度;(2)△ACB的周長24.
【解析】試題分析:(1)根據(jù)線段垂直平分線得出AD=BD,推出∠B=∠DAB,求出∠CAD=∠DAB=∠B,根據(jù)三角形內(nèi)角和定理得出3∠B=90°,求出即可;
(2)根據(jù)△ACD的周長和AD=BD推出AC+BC=14,即可求出△ACB周長.
試題解析:解:(1)∵DE垂直平分AB,∴AD=BD,∴∠B=∠DAB,∵∠CAB的平分線AD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴3∠B=90°,∴∠B=30°;
(2)∵△ACD的周長14,∴AC+CD+AD=14,∵AD=BD,∴AC+CD+BD=AC+BC=14,∵AB=10,∴△ACB的周長是AC+BC+AB=24.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD的兩條邊在坐標(biāo)軸上,點(diǎn)D與坐標(biāo)原點(diǎn)O重合,且AD=8,AB=6.如圖2,矩形ABCD沿OB方向以每秒1個單位長度的速度運(yùn)動,同時點(diǎn)P從A點(diǎn)出發(fā)也以每秒1個單位長度的速度沿矩形ABCD的邊AB經(jīng)過點(diǎn)B向點(diǎn)C運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時,矩形ABCD和點(diǎn)P同時停止運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時間為t秒.
(1)當(dāng)t=5時,請直接寫出點(diǎn)D、點(diǎn)P的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段AB或線段BC上運(yùn)動時,求出△PBD的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出相應(yīng)t的取值范圍;
(3)點(diǎn)P在線段AB或線段BC上運(yùn)動時,作PE⊥x軸,垂足為點(diǎn)E,當(dāng)△PEO與△BCD相似時,求出相應(yīng)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y=ax2+bx+c的頂點(diǎn)是A(2,1),且經(jīng)過點(diǎn)B(1,0),則拋物線的函數(shù)關(guān)系式為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新疆近年旅游業(yè)發(fā)展快速,每年都吸引眾多海內(nèi)外游客前來觀光、旅游,據(jù)有關(guān)部門統(tǒng)計報道:2016年全疆共接待游客3354萬人次,將3354萬用科學(xué)計數(shù)法表示為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB分別與⊙O相切于點(diǎn)A,B,點(diǎn)M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM = AN;
(2)若⊙O的半徑R = 3,PA = 9,求OM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com