【題目】某校舉行全員賽課比賽,八年級3位數(shù)學老師分別記為A,B,C,(其中A是女老師,B,C是男老師)被安排在星期二下午三節(jié)上,他們通過抽簽決定上課順序。

1)女老師A不希望上第一節(jié)課,卻偏偏抽到上第一節(jié)課的概率是

2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結果,并求女老師A比男老師B先上課的概率.

【答案】(1);(2).

【解析】

1)根據(jù)概率公式計算即可求得結果;
2)畫樹狀圖得出所有等可能結果,再從中找到符合條件的結果數(shù),利用概率公式計算即可得結果.

解:(1 ∵下午上第一節(jié)課的有3種等可能結果,
∴女老師抽到上第一節(jié)課的概率是 ;

2)畫樹狀圖為

一共有6種等可能結果,其中女老師A比男老師B先上課的結果數(shù)為3,

P(女老師A比男老師B先上課)= .

故答案為:(1 ;(2 .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:在一次數(shù)學社團活動課上,同學們測量一座古塔CD的高度,他們首先在A處安置測量器,測得塔頂C的仰角∠CFE30°,然后往塔的方向前進100米到達B處,此時測得塔頂C的仰角∠CGE60°,已知測量器高1.5米,請你根據(jù)以上數(shù)據(jù)計算出古塔CD的高度.(保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種蔬菜每千克售價(元)與銷售月份之間的關系如圖1所示,每千克成本(元)與銷售月份之間的關系如圖2所示,其中圖1中的點在同一條線段上,圖2中的點在同一條拋物線上,且拋物線的最低點的坐標為(61).

1)求出之間滿足的函數(shù)表達式,并直接寫出的取值范圍;

2)求出之間滿足的函數(shù)表達式;

3)設這種蔬菜每千克收益為元,試問在哪個月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價-成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC的角平分線,線段AD的垂直平分線分別交ABAC于點E、F,連接DE、DF.

(1)試判定四邊形AEDF的形狀,并證明你的結論.

(2)若DE=13,EF=10,求AD的長.

(3)ABC滿足什么條件時,四邊形AEDF是正方形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進價之和為18元.當銷售1千克甲種蘋果和1千克乙種蘋果利潤分別為4元和2元時,陳老師購買3千克甲種蘋果和4千克乙種蘋果共用82元.

(1)求甲、乙兩種蘋果的進價分別是每千克多少元?

(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=ACBC=2,將△ABC繞點C順針方向旋轉α(0°<α<360°),得到△DEC,使點EAB邊上。

1)如圖1,連接AD,

①求證:四邊形ABCD是平行四邊形;

AE=AD時,求旋轉角α的度數(shù);

2)如圖2,若AE=2BE,AB的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,現(xiàn)將平行四邊形ABCD沿其對角線AC折疊,使點B落在點B處.ABCD交于點E

1)求證:△AED≌△CEB;

2)過點EEFACAB于點F,連接CF,判斷四邊形AECF的形狀并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A的坐標是(4,0),并且OA=OC=4OB,動點P在過A,BC三點的拋物線上.

1)求拋物線的解析式;

2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;

3)過動點PPE垂直于y軸于點E,交直線AC于點D,過點Dx軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,點E在邊AD上,ABE=45°,BE=DE,連接BD,點P在線段DE上,過點P作PQBD交BE于點Q,連接QD.設PD=x,PQD的面積為y,則能表示y與x函數(shù)關系的圖象大致是( 。

查看答案和解析>>

同步練習冊答案