【題目】如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,8),點P在邊BC上以每秒1個單位長的速度由點C向點B運動,同時點Q在邊AB上以每秒a個單位長的速度由點A向點B運動,運動時間為t秒(t>0).
(1)若反比例函數(shù)y= 圖象經(jīng)過P點、Q點,求a的值;
(2)若OQ垂直平分AP,求a的值;
(3)當(dāng)Q點運動到AB中點時,是否存在a使△OPQ為直角三角形?若存在,求出a的值,若不存在請說明理由;
【答案】
(1)
解:∵A(10,0),C(0,8),點P在邊BC上以每秒1個單位長的速度由點C向點B運動,同時點Q在邊AB上以每秒a個單位長的速度由點A向點B運動,
∴P(t,8),Q(10,at),
∵反比例函數(shù)y= 圖象經(jīng)過P點、Q點,
∴8t=10at,解得a= ;
(2)
解:∵OQ垂直平分AP,
∴OP=OA,PQ=QA,
∴ =10,解得t=6,
∴Q(10,6a),P(6,8),
∵PQ=QA,
∴(10﹣6)2+(6a﹣8)2=(6a)2,解得a=
(3)
解:如圖,
∵Q為AB的中點,
∴Q(10,4),P(t,8).
當(dāng)∠OPQ=90°時,OP2+PQ2=OQ2,即t2+82+(10﹣t)2+42=102+42,整理得,t2﹣10t+32=0,
∵△=(﹣10)2﹣4×32=100﹣128=﹣28<0,
∴此方程無解,即此種情況不存在;
當(dāng)∠POQ=90°時,OQP2+PQ2=OP2,即102+42+(10﹣t)2+42=t2+82,整理得,﹣20t=﹣168,解得t= ,
∵AQ=4,
∴at=4,即 a=4,解得a= .
【解析】(1)先用t表示出P、Q兩點的坐標(biāo),再由反比例函數(shù)圖象上點的坐標(biāo)特點即可得出結(jié)論;(2)先根據(jù)OQ垂直平分AP得出OP=OA,求出t的值,再由PQ=QA即可得出a的值;(3)分∠OPQ=90°與∠POQ=90°兩種情況進行分類討論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當(dāng)點H與點A重合時,EF=2 .
以上結(jié)論中,你認為正確的有 . (填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線y=a(x+m)2+n的頂點在線段AB上,與x軸交于C,D兩點(C在D的左側(cè)),點C的橫坐標(biāo)最小值為﹣3,則點D的橫坐標(biāo)的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,10個邊長為1的正方形如圖擺放在平面直角坐標(biāo)系中,經(jīng)過原點的一條直線l將這10個正方形分成面積相等的兩部分,則該直線l的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y1=ax2﹣4ax+3(a≠0)與y軸交于點A,A、B兩點關(guān)于對稱軸對稱,直線OB分別與拋物線的對稱軸相交于點C.
(1)直接寫出對稱軸及B點的坐標(biāo);
(2)已知直線y2=bx﹣4b+3(b≠0)與拋物線的對稱軸相交于點D. ①判斷直線y2=bx﹣4b+3(b≠0)是否經(jīng)過點B,并說明理由;
②若△BDC的面積為1,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4cm,動點P、Q同時從點A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點C運動,設(shè)運動時間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間函數(shù)關(guān)系可以用圖象表示為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將斜邊長為2個等腰直角三角形按如圖所示的位置擺放,得到一條折線O﹣A﹣B﹣C﹣D…,點P從點O出發(fā)沿著折線以每秒 的速度向右運動,2016秒時,點P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于( )
A.30°
B.40°
C.50°
D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c圖象如圖,下列正確的個數(shù)為( )
①bc>0;
②2a﹣3c<0;
③2a+b>0;
④ax2+bx+c=0有兩個解x1 , x2 , 當(dāng)x1>x2時,x1>0,x2<0;
⑤a+b+c>0;
⑥當(dāng)x>1時,y隨x增大而減。
A.2
B.3
C.4
D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com