【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=x和y=﹣x的圖象分別為直線l1,l2,過l1上的點(diǎn)A1(1,)作x軸的垂線交l2于點(diǎn)A2,過點(diǎn)A2作y軸的垂線交l1于點(diǎn)A3,過點(diǎn)A3作x軸的垂線交l2于點(diǎn)A4,…依次進(jìn)行下去,則點(diǎn)A2019的橫坐標(biāo)為_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條公路旁依次有,,三個村莊,甲乙兩人騎自行車分別從村、村同時出發(fā)前往村,甲乙之間的距離與騎行時間之間的函數(shù)關(guān)系如圖所示,下列結(jié)論:
①,兩村相距; ②出發(fā)后兩人相遇;
③甲每小時比乙多騎行; ④相遇后,乙又騎行了時兩人相距.
其中正確的有_____________________.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標(biāo)系中,△OAB的三個頂點(diǎn)O(0,0)、A(4,1)、B(4,4)均在格點(diǎn)上.
(1)畫出△OAB繞原點(diǎn)順時針旋轉(zhuǎn)后得到的△,并寫出點(diǎn)的坐標(biāo);
(2)在(1)的條件下,求線段在旋轉(zhuǎn)過程中掃過的扇形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)和點(diǎn).
(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);
(2)點(diǎn)是拋物線上、之間的一點(diǎn),過點(diǎn)作軸于點(diǎn),軸,交拋物線于點(diǎn),過點(diǎn)作軸于點(diǎn),當(dāng)矩形的周長最大時,求點(diǎn)的橫坐標(biāo);
(3)如圖2,連接、,點(diǎn)在線段上(不與、重合),作,交線段于點(diǎn),是否存在這樣點(diǎn),使得為等腰三角形?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,已知B(-1,0),拋物線的對稱軸是直線.
(1)直接寫出拋物線的解析式;
(2)點(diǎn)E是線段AC上的一個動點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動到什么位置時,線段EF的長度最長?
(3)在拋物線是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A是以BC為直徑的⊙O上一點(diǎn),I是△ABC的內(nèi)心,AI的延長線交⊙O于點(diǎn)D,過點(diǎn)D作BC的平行線交AB、AC的延長線于E、F.下列說法:①△DBC是等腰直角三角形;②EF與⊙O相切;③EF=2BC;④點(diǎn)B、I、C在以點(diǎn)D 為圓心的同一個圓上.其中一定正確的是_______(把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(4,0),B(1,3),以OA、OB為邊作□OACB,反比例函數(shù)(k≠0)的圖象經(jīng)過點(diǎn)C.則下列結(jié)論不正確的是( 。
A.□OACB的面積為12
B.若y<3,則x>5
C.將□OACB向上平移12個單位長度,點(diǎn)B落在反比例函數(shù)的圖象上.
D.將□OACB繞點(diǎn)O旋轉(zhuǎn)180°,點(diǎn)C的對應(yīng)點(diǎn)落在反比例函數(shù)圖象的另一分支上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廬陽春風(fēng)體育運(yùn)動品商店從廠家購進(jìn)甲,乙兩種T恤共400件,其每件的售價與進(jìn)貨量m(件)之間的關(guān)系及成本如下表所示:
(1)當(dāng)甲種T恤進(jìn)貨250件時,求兩種T恤全部售完的利潤是多少元.
(2)若所有的T恤都能售完,求該店獲得的總利潤y(元)與乙種T恤的進(jìn)貨量x(件)之間的函數(shù)關(guān)系式;
(3)在(2)的條件下已知兩種T恤進(jìn)貨量都不低于100件,且所進(jìn)的T恤全部售完,該商店如何安排進(jìn)貨才能獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P是半徑為4的⊙O外一點(diǎn),PA是⊙O的切線,切點(diǎn)為A,且PA=4,在⊙O內(nèi)作長為4的弦AB,連接PB,則PB的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com