【題目】閱讀材料:對(duì)于一個(gè)關(guān)于的一元二次方程(其中a≠0,a、b、c為常數(shù))的兩根分別為,,我們有如下發(fā)現(xiàn)①若,為整數(shù),則這個(gè)一元二次方程的判別式一定為完全平方數(shù);② ,滿足韋達(dá)定理:即,;
③韋達(dá)定理也有逆定理,即如果兩數(shù)和滿足如下關(guān)系:,,那么這兩個(gè)數(shù)和是方程()的兩個(gè)根.
請(qǐng)應(yīng)用上述材料解決以下問(wèn)題:
(1)若實(shí)數(shù),是關(guān)于的一元二次方程的兩個(gè)根,
①當(dāng)時(shí),則 , ;
②若均為整數(shù)且,求的值;
(2)已知實(shí)數(shù)滿足,,求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)O為AB中點(diǎn),點(diǎn)P為直線BC上的動(dòng)點(diǎn)(不與點(diǎn)B、點(diǎn)C重合),連接OC、OP,將線段OP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°,得到線段PQ,連接BQ.
(1)如圖1,當(dāng)點(diǎn)P在線段BC上時(shí),請(qǐng)直接寫出線段BQ與CP的數(shù)量關(guān)系.
(2)如圖2,當(dāng)點(diǎn)P在CB延長(zhǎng)線上時(shí),(1)中結(jié)論是否成立?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由;
(3)如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線上時(shí),若∠BPO=15°,BP=4,請(qǐng)求出BQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三角形BCO是三角形BAO經(jīng)過(guò)某種變換得到的.
(1)寫出A,C的坐標(biāo);
(2)圖中A與C的坐標(biāo)之間的關(guān)系是什么?
(3)如果三角形AOB中任意一點(diǎn)M的坐標(biāo)為(x,y),那么它的對(duì)應(yīng)點(diǎn)N的坐標(biāo)是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是CD的中點(diǎn),連接BE并延長(zhǎng)交AD延長(zhǎng)線于點(diǎn)F.
(1)求證:點(diǎn)D是AF的中點(diǎn);
(2)若AB=2BC,連接AE,試判斷AE與BF的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB:與直線AC:都與雙曲線交于點(diǎn)A(1,m),這兩條直線分別與軸交于B、C兩點(diǎn).
(1)求和的值.
(2)將直線AB沿軸正方向平移,平移后交直線AC于點(diǎn)D,交軸于點(diǎn)M,已知M的橫坐標(biāo)為6,求△MCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C、P是上兩點(diǎn),AB=13,AC=5,
(1)如圖(1),若點(diǎn)P是的中點(diǎn),求PA的長(zhǎng);
(2)如圖(2),若點(diǎn)P是的中點(diǎn),求PA得長(zhǎng) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(0,2)、(1,0),頂點(diǎn)C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點(diǎn)D的對(duì)應(yīng)點(diǎn)D′落在拋物線上,則點(diǎn)D與其對(duì)應(yīng)點(diǎn)D′之間的距離為 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O1和⊙O2外切于M,AB是⊙O1和⊙O2的外公切線,A,B為切點(diǎn),若MA=4cm,MB=3cm,則M到AB的距離是( 。
A. cm B. cm C. cm D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,M為BC上的點(diǎn),E是AD的延長(zhǎng)線的點(diǎn),且AE=AM,過(guò)E作EF⊥AM垂足為F,EF交DC于點(diǎn)N.
(1)求證:AF=BM;
(2)若AB=12,AF=5,求DE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com