【題目】已知兩圓的半徑分別為1和5,圓心距為4,那么兩圓的位置關(guān)系是( )
A.外離
B.外切
C.相交
D.內(nèi)切
【答案】D
【解析】解:∵兩圓半徑分別是1和5,圓心距為4, 又∵5﹣1=4,
∴這兩個(gè)圓的位置關(guān)系內(nèi)切.
故選D.
【考點(diǎn)精析】利用圓與圓的位置關(guān)系對題目進(jìn)行判斷即可得到答案,需要熟知兩圓之間有五種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個(gè)公共點(diǎn)的叫相交.兩圓圓心之間的距離叫做圓心距.兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,在正方形ABCD中,△AEF的頂點(diǎn)E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).
(2)如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點(diǎn)M,N是BD邊上的任意兩點(diǎn),且∠MAN=45°,將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN,ND,DH之間的數(shù)量關(guān)系,并說明理由.
(3)在圖①中,連接BD分別交AE,AF于點(diǎn)M,N,若EG=4,GF=6,BM=3,求AG,MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=kx﹣1(常數(shù)k>0)的圖象不經(jīng)過的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當(dāng)∠AMN=°時(shí),結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一份試卷共有25道選擇題,每道選擇題都給出了4個(gè)備選答案,其中只有一個(gè)是正確的,每道題選對得4分,不選或選錯扣1分.小明同學(xué)解答這份試卷時(shí)得了90分,請你求出小明做對了幾道題?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個(gè)圖形中面積為1的正方形有2個(gè),第(2)個(gè)圖形中面積為1的正方形有5個(gè),第(3)個(gè)圖形中面積為1的正方形有9個(gè),…,按此規(guī)律.則第(6)個(gè)圖形中面積為1的正方形的個(gè)數(shù)為( 。
A.20
B.27
C.35
D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各式的值:
(1)(+)﹣
(2)(﹣3)2﹣|﹣|+﹣
(3)x2﹣121=0;
(4)(x﹣5)3+8=0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com