【題目】在平面直角坐標系中,O為原點,點B在x軸的正半軸上,D(0,8),將矩形OBCD折疊,使得頂點B落在CD邊上的P點處.
(1)如圖①,已知折痕與邊BC交于點A,若OD=2CP,求點A的坐標.
(2)若圖①中的點 P 恰好是CD邊的中點,求∠AOB的度數(shù).
(3)如圖②,在(I)的條件下,擦去折痕AO,線段AP,連接BP,動點M在線段OP上(點M與P,O不重合),動點N在線段OB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E,試問當點M,N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長度(直接寫出結(jié)果即可).
【答案】(1)A(10,5);(2)∠AOB=30°;(3)線段EF的長度不變,它的長度為2.
【解析】試題分析:(1)設OB=OP=DC=x,則DP=x﹣4,在Rt△ODP中,根據(jù)OD2+DP2=OP2,解得:x=10,然后根據(jù)△ODP∽△PCA得到AC==3,從而得到AB=5,表示出點A(10,5);
(2)根據(jù)點P恰好是CD邊的中點設DP=PC=y,則DC=OB=OP=2y,在Rt△ODP中,根據(jù)OD2+DP2=OP2,解得:y=,然后利用△ODP∽△PCA得到AC=,從而利用tan∠AOB=得到∠AOB=30°;
(3)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的結(jié)論求出PB,最后代入EF=PB即可得出線段EF的長度不變.
試題解析:(1)∵D(0,8),∴OD=BC=8,
∵OD=2CP,∴CP=4,
設OB=OP=DC=x,則DP=x﹣4,
在Rt△ODP中,OD2+DP2=OP2,即:82+(x﹣4)2=x2,解得:x=10,
∵∠OPA=∠B=90°,∴△ODP∽△PCA,∴OD:PC=DP:CA,
∴8:4=(x﹣4):AC,則AC==3,
∴AB=5,
∴點A(10,5);
(2)∵點 P 恰好是CD邊的中點,
設DP=PC=y,則DC=OB=OP=2y,
在Rt△ODP中,OD2+DP2=OP2,即:82+y2=(2y)2,解得:y=,
∵∠OPA=∠B=90°,∴△ODP∽△PCA,∴OD:PC=DP:CA,∴8:y=y:AC,
則AC= ,∴AB=8﹣=,
∵OB=2y=,∴tan∠AOB===,
∴∠AOB=30°;
(3)作MQ∥AN,交PB于點Q,如圖2,
∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,
∵BN=PM,∴BN=QM.
∵MP=MQ,ME⊥PQ,∴EQ=PQ.
∵MQ∥AN,∴∠QMF=∠BNF,
在△MFQ和△NFB中, ,∴△MFQ≌△NFB(AAS).
∴QF=QB,
∴EF=EQ+QF=PQ+QB=PB,
由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,
∴PB==4,
∴EF=PB=2,
∴在(1)的條件下,當點M、N在移動過程中,線段EF的長度不變,它的長度為2.
科目:初中數(shù)學 來源: 題型:
【題目】開學前,李浩去商場買書包,商場在搞促銷活動,買一個書包可以通過抽獎形式送筆.方法如下:在一個不透明的箱子里,分別裝有四張完全一樣的卡片,上面分別寫有“鋼筆”、 “圓珠筆”、“鉛筆”、“謝謝”字樣(其中“謝謝”卡即意味著沒有獎品).憑抽取的卡片,工作人員即時對應地給出獎品.李浩買了一個書包,并參加了抽獎.
(1)若只準抽一次,且每次只能抽一張,直接寫出李浩能抽到一支筆的概率;
(2)若可以不放回地抽兩次,每次只能抽一張,請用樹形圖把所有可能的情況表示出來,并求李浩得到鋼筆和圓珠筆的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,,垂足分別為E,F.
(1)求證:△BED≌△CFD;
(2)若∠A=90°,求證:四邊形DFAE是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是線段AB上的一點,OA=OC,OD平分∠AOC交AC于點D,OF平分∠COB,CF⊥OF于點F.
(1)求證:四邊形CDOF是矩形;
(2)當∠AOC多少度時,四邊形CDOF是正方形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將點M向左平移3個單位長度后的坐標是(-2,1),則點M的坐標是( )
A. (-2,4)B. (-5,1)C. (1,1)D. (-2,-4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一批襯衫,平均每天可售出20件,每件盈利40元,為了擴大銷售,增加利潤,盡量減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫降價1元,商場平均每天可多售出2件,若商場每天要獲利潤1200元,請計算出每件襯衫應降價多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com