【題目】如圖,已知ABCD,AB=m,AD=n,將ABCD繞點D逆時針旋轉,得到ABCD,點ACD延長線上.

1)若n=4,當BA所在直線恰好經(jīng)過點A時,求點A運動到A所經(jīng)過的路徑的長度;

2)連接AC、BD相交于點O,連接OA、DB,當四邊形OABD為平行四邊形時,求的值.

【答案】1;(2

【解析】

1)連接AA’,依據(jù)鄰補角、平行線的性質、旋轉的性質,得到,;依據(jù)等邊對等角,得到,從而得到,即可判定是等邊三角形,則60°,依據(jù)弧長公式計算即可;

2)由、,依據(jù)平行四邊形的性質和旋轉的性質,得=,,,依據(jù)SSS可得,依據(jù)全等的性質、平行線的性質、等角對等邊,得到,即,變式即可.

解:(1)連接AA’,

ABCD,

,

,

又由旋轉得,

,,

BA所在直線恰好經(jīng)過點A,

,

又∵,

,

是等邊三角形,

60°,

∴點A運動到A所經(jīng)過的路徑的長度為=

2)∵,

,,

∵將ABCD繞點D逆時針旋轉,得到ABCD,

,,,,

,

,,

,,

(SSS),

,

,

,即,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點E,F(xiàn)DC的中點,連結EF、BF,下列結論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB;④∠CFE=3DEF,其中正確結論的個數(shù)共有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+mx+m2的頂點為A,且經(jīng)過點(3,﹣3.

1)求拋物線的解析式及頂點A的坐標;

2)將原拋物線沿射線OA方向進行平移得到新的拋物線,新拋物線與射線OA交于CD兩點,如圖,請問:在拋物線平移的過程中,線段CD的長度是否為定值?若是,請求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,四邊形ABCD為⊙O的內接四邊形,點PBA的延長線上,PD與⊙O相切,D為切點,若∠BCD125°,則∠ADP的大小為(

A.25°B.40°C.35°D.30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本學期開學初,學校體育組對九年級某班50名學生進行了跳繩項目的測試,根據(jù)測試成績制作了下面兩個統(tǒng)計圖.

根據(jù)統(tǒng)計圖解答下列問題:

1)本次測試的學生中,得4分的學生有多少人?

2)本次測試的平均分是多少分?

3)通過一段時間的訓練,體育組對該班學生的跳繩項目進行了第二次測試,測得成績的最低分為3分.且得4分和5分的人數(shù)共有45人,平均分比第一次提高了0.8分,問第二次測試中得4分、5分的學生各有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了節(jié)省材料,某農(nóng)場主利用圍墻(圍墻足夠長)為一邊,用總長為80m的籬笆圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等,則能圍成的矩形區(qū)域ABCD的面積最大值是___m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市政府規(guī)定:若本市企業(yè)按生產(chǎn)成本價提供產(chǎn)品給大學生銷售,則政府給該企業(yè)補償補償額批發(fā)價生產(chǎn)成本價銷售量大學生小明投資銷售本市企業(yè)生產(chǎn)的一種新型節(jié)能燈,調查發(fā)現(xiàn),每月銷售量與銷售單價之間的關系近似滿足一次函數(shù):已知這種節(jié)能燈批發(fā)價為每件12元,設它的生產(chǎn)成本價為每件m

(1)當時.

①若第一個月的銷售單價定為20元,則第一個月政府要給該企業(yè)補償多少元?

②設所獲得的利潤為,當銷售單價定為多少元時,每月可獲得最大利潤?

(2)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得超過30今年三月小明獲得贏利,此時政府給該企業(yè)補償了920元,若mx都是正整數(shù),求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),拋物線yax2+6x+cx軸于A,B兩點,交y軸于點C.直線yx+5經(jīng)過點A,C

1)求拋物線的解析式;

2)如圖(2),若過點B的直線交直線AC于點M

BMAC時,過拋物線上一動點P(不與點BC重合),作直線BM的平行線交AC于點Q,若以點B,M,Q,P為頂點的四邊形是平行四邊形,求點P的橫坐標;

連結BC,當直線BM與直線AC的夾角等于∠ACB2倍時,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是超市的手推車,如圖2是其側面示意圖,已知前后車輪半徑均為5 cm,兩個車輪的圓心的連線AB與地面平行,測得支架ACBC60cmAC、CD所在直線與地面的夾角分別為30°、60°,CD50cm

1)求扶手前端D到地面的距離;

2)手推車內裝有簡易寶寶椅,EF為小坐板,打開后,椅子的支點H到點C的距離為10 cmDF20cm,EFAB,∠EHD45°,求坐板EF的寬度.(本題答案均保留根號)

查看答案和解析>>

同步練習冊答案