【題目】如圖,已知二次函數(shù)過(﹣2,4),(﹣4,4)兩點.
(1)求二次函數(shù)的解析式;
(2)將沿x軸翻折,再向右平移2個單位,得到拋物線,直線y=m(m>0)交于M、N兩點,求線段MN的長度(用含m的代數(shù)式表示);
(3)在(2)的條件下,、交于A、B兩點,如果直線y=m與、的圖象形成的封閉曲線交于C、D兩點(C在左側(cè)),直線y=﹣m與、的圖象形成的封閉曲線交于E、F兩點(E在左側(cè)),求證:四邊形CEFD是平行四邊形.
【答案】(1);(2);(3)證明見解析.
【解析】
試題分析:(1)根據(jù)待定系數(shù)法即可解決問題.
(2)先求出拋物線y2的頂點坐標,再求出其解析式,利用方程組以及根與系數(shù)關(guān)系即可求出MN.
(3)用類似(2)的方法,分別求出CD、EF即可解決問題.
試題解析:(1)∵二次函數(shù)過(﹣2,4),(﹣4,4)兩點,∴,解得:,∴二次函數(shù)的解析式.
(2)∵=,∴頂點坐標(﹣3,),∵將沿x軸翻折,再向右平移2個單位,得到拋物線,∴拋物線的頂點坐標(﹣1,),∴拋物線為,由,消去y整理得到,設(shè),是它的兩個根,則MN===;
(3)由,消去y整理得到,設(shè)兩個根為,,則CD===,由,消去y得到,設(shè)兩個根為,,則EF===,∴EF=CD,EF∥CD,∴四邊形CEFD是平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下面的推理過程補充完整,并在括號內(nèi)注明理由.
如圖,點B、D在線段AE上,BC∥EF,AD=BE,BC=EF,
試說明:(1)∠C=∠F;(2)AC∥DF.
解:(1)∵AD=BE(已知)
∴AD+DB=DB+BE( ① )
即AB=DE
∵BC∥EF(已知)
∴∠ABC=∠( ② )。 ③ )
又∵BC=EF(已知)
∴△ABC≌△DEF( ④ )
∴∠C=∠F,∠A=∠FDE( ⑤ )
∴AC∥DF( ⑥ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在比例尺為1∶50000的地圖上,量得A、B兩地的圖上距離AB=3cm,則A、B兩地的實際距離為____________ km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,半徑均為個單位長度的半圓, , …….組成一條平滑的曲線,點從原點出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第時,點的坐標是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生書法比賽,對參賽作品按A、B、C、D四個等級進行了評定.現(xiàn)隨機取部分學(xué)生書法作品的評定結(jié)果進行分析,并繪制扇形統(tǒng)計圖和條形統(tǒng)計圖如下:
根據(jù)上述信息完成下列問題:
(1)求這次抽取的樣本的容量;
(2)請在圖②中把條形統(tǒng)計圖補充完整;
(3)已知該校這次活動共收到參賽作品750份,請你估計參賽作品達到B級以上(即A級和B級)有多少份?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com