【題目】已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,.
(1)點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是 ;
(2)將△ABC繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)180°,畫(huà)出圖形,直接寫(xiě)出點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo);
(3)請(qǐng)直接寫(xiě)出:以A,B,C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).
【答案】(1)點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)坐標(biāo)(2,3);(2)圖詳見(jiàn)解析,點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(6,0);(3)D(-5,-3)或(-7,3)或(3,3).
【解析】
(1)根據(jù)關(guān)于y軸對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相同解答即可;
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C繞點(diǎn)O旋轉(zhuǎn)180°的對(duì)應(yīng)點(diǎn)A′、B′、C′的位置,然后順次連接即可;
(3)分以AB、BC、AC為對(duì)角線,分別寫(xiě)出即可.
解:(1)∵關(guān)于y軸對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相同,
∴點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)坐標(biāo)(2,3);
(2)△ABC繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)180°的三角形如圖所示,點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(6,0);
(3)以AB為對(duì)角線時(shí),第四個(gè)頂點(diǎn)D的坐標(biāo)(-7,3),
以BC為對(duì)角線時(shí),第四個(gè)頂點(diǎn)D的坐標(biāo)(-5,-3),
以AC為對(duì)角線時(shí),第四個(gè)頂點(diǎn)D的坐標(biāo)(3,3),
∴D(-5,-3)或(-7,3)或(3,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90° ,AB=8,AC=10.點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度從A向B運(yùn)動(dòng);同時(shí)點(diǎn)Q以每秒2個(gè)單位的速度從C向A運(yùn)動(dòng).當(dāng)其中一個(gè)點(diǎn)到達(dá)時(shí),另一個(gè)點(diǎn)也隨即停止運(yùn)動(dòng),從出發(fā)開(kāi)始___秒時(shí),△APQ與△ABC相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為8的正方形紙片ABCD沿著EF折疊,使點(diǎn)C落在AB邊的中點(diǎn)M處.點(diǎn)D落在點(diǎn)D'處,MD'與AD交于點(diǎn)G,則△AMG的內(nèi)切圓半徑的長(zhǎng)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為等邊三角形ABC內(nèi)一點(diǎn),連接OA,OB,OC,將線段BO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°到BM,連接CM,OM.
(1)求證:AO=CM;
(2)若OA=8,OC=6,OB=10,判斷△OMC的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D為△ABC內(nèi)的一點(diǎn),∠ADB=120°,∠ADC=90°,將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得△ACE,連接DE.
(1)求證:AD=DE;
(2)求∠DCE的度數(shù);
(3)若BD=1,求AD,CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知k為實(shí)數(shù),關(guān)于x的方程為x2+(k+2)x+2k=1.
(1)判斷方程有無(wú)實(shí)數(shù)根.
(2)當(dāng)方程的根和k都是有理數(shù)時(shí),請(qǐng)直接寫(xiě)出其中k的1個(gè)值和相應(yīng)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連接BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是( 。
A. ①②③④ B. ②③ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,AB是圓O的一條弦,點(diǎn)C是優(yōu)弧 上一點(diǎn).
(1)若∠ACB=45°,點(diǎn)P是O上一點(diǎn)(不與A.B重合),則∠APB=___;
(2)如圖②,若點(diǎn)P是弦AB與所圍成的弓形區(qū)域(不含弦AB與)內(nèi)一點(diǎn).求證:∠APB>∠ACB;
(3)請(qǐng)?jiān)趫D③中直接用陰影部分表示出在弦AB與所圍成的弓形區(qū)域內(nèi)滿足
的點(diǎn)P所在的范圍;
(4)在(1)的條件下,以PB為邊,向右作等腰直角三角形PBQ,連結(jié)AQ,如圖4,已知AB=2,
①當(dāng)點(diǎn)Q在線段AB的延長(zhǎng)線上時(shí),線段AQ的長(zhǎng)為____________
②線段AQ的最小值為_____________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com