【題目】如圖,折疊矩形OABC的一邊BC,使點(diǎn)C落在OA邊的點(diǎn)D處,已知折痕BE=,且=,以O(shè)為原點(diǎn),OA所在的直線為x軸建立如圖所示的平面直角坐標(biāo)系,拋物線l:y=x2+x+c經(jīng)過(guò)點(diǎn)E,且與AB邊相交于點(diǎn)F.

(1)求證:△ABD∽△ODE;
(2)若M是BE的中點(diǎn),連接MF,求證:MF⊥BD;
(3)P是線段BC上一點(diǎn),點(diǎn)Q在拋物線l上,且始終滿足PD⊥DQ,在點(diǎn)P運(yùn)動(dòng)過(guò)程中,能否使得PD=DQ?若能,求出所有符合條件的Q點(diǎn)坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

【答案】
(1)

【解答】證明:

∵四邊形ABCO為矩形,且由折疊的性質(zhì)可知△BCE≌△BDE,

∴∠BDE=∠BCE=90°,

∵∠BAD=90°,

∴∠EDO+∠BDA=∠BDA+∠DAB=90°,

∴∠EDO=∠DBA,且∠EOD=∠BAD=90°,

∴△ABD∽△ODE;


(2)

【解答】

證明:

=

∴設(shè)OD=4x,OE=3x,則DE=5x,

∴CE=DE=5x,

∴AB=OC=CE+OE=8x,

又∵△ABD∽△ODE,

==,

∴DA=6x,

∴BC=OA=10x,

在Rt△BCE中,由勾股定理可得BE2=BC2+CE2,即(2=(10x)2+(5x)2,解得x=1,

∴OE=3,OD=4,DA=6,AB=8,OA=10,

∴拋物線解析式為y=x2+x+3,

當(dāng)x=10時(shí),代入可得y=,

∴AF=,BF=AB﹣AF=8﹣=

在Rt△AFD中,由勾股定理可得DF===

∴BF=DF,

又M為Rt△BDE斜邊上的中點(diǎn),

∴MD=MB,

∴MF為線段BD的垂直平分線,

∴MF⊥BD;


(3)

【解答】

解:由(2)可知拋物線解析式為y=x2+x+3,設(shè)拋物線與x軸的兩個(gè)交點(diǎn)為H、G,

令y=0,可得0=x2+x+3,解得x=﹣4或x=12,

∴H(﹣4,0),G(12,0),

①當(dāng)PD⊥x軸時(shí),由于PD=8,DM=DN=8,

故點(diǎn)Q的坐標(biāo)為(﹣4,0)或(12,0)時(shí),△PDQ是以P為直角頂點(diǎn)的等腰直角三角形;

②當(dāng)PD不垂直與x軸時(shí),分別過(guò)P,Q作x軸的垂線,垂足分別為N,I,則Q不與G重合,從而I不與G重合,即DI≠8.

∵PD⊥DQ,

∴∠QDI=90°﹣∠PDN=∠DPN,

∴Rt△PDN∽R(shí)t△DQI,

∵PN=8,

∴PN≠DI,

∴Rt△PDN與Rt△DQI不全等,

∴PD≠DQ,另一側(cè)同理PD≠DQ.

綜合①,②所有滿足題設(shè)條件的點(diǎn)Q的坐標(biāo)為(﹣4,0)或

(12,0).


【解析】(1)由折疊和矩形的性質(zhì)可知∠EDB=∠BCE=90°,可證得∠EDO=∠DBA,可證明△ABD∽△ODE;
(2)由條件可求得OD、OE的長(zhǎng),可求得拋物線解析式,結(jié)合(1)由相似三角形的性質(zhì)可求得DA、AB,可求得F點(diǎn)坐標(biāo),可得到BF=DF,又由直角三角形的性質(zhì)可得MD=MB,可證得MF為線段BD的垂直平分線,可證得結(jié)論;
(3)過(guò)D作x軸的垂線交BC于點(diǎn)G,設(shè)拋物線與x軸的兩個(gè)交點(diǎn)分別為M、N,可求得DM=DN=DG,可知點(diǎn)M、N為滿足條件的點(diǎn)Q,可求得Q點(diǎn)坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有學(xué)生2000名,為了了解學(xué)生在籃球、足球、排球和乒乓球這四項(xiàng)球類(lèi)運(yùn)動(dòng)中最喜愛(ài)的一項(xiàng)球類(lèi)運(yùn)動(dòng)情況,對(duì)學(xué)生開(kāi)展了隨機(jī)調(diào)查,丙將結(jié)果繪制成如下的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息,完成下列問(wèn)題:
(1)本次調(diào)查的樣本容量是
(2)某位同學(xué)被抽中的概率是 ;
(3)據(jù)此估計(jì)全校最喜愛(ài)籃球運(yùn)動(dòng)的學(xué)生人數(shù)約有 名;
(4)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC是等腰直角三角形,動(dòng)點(diǎn)P在斜邊AB所在的直線上,以PC為直角邊作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解決下列問(wèn)題:

(1)如圖①,若點(diǎn)P在線段AB上,且AC=1+ , PA= , 則:
①線段PB= ,PC= ;
②猜想:PA2 , PB2 , PQ2三者之間的數(shù)量關(guān)系為
(2)如圖 , 若點(diǎn)PAB的延長(zhǎng)線上,在(1)中所猜想的結(jié)論仍然成立,請(qǐng)你利用圖給出證明過(guò)程;
(3)若動(dòng)點(diǎn)P滿足 , 求的值.(提示:請(qǐng)利用備用圖進(jìn)行探求)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB∥DE,AB=DE,BF=EC.

(1)求證:AC∥DF;
(2)若CF=1個(gè)單位長(zhǎng)度,能由△ABC經(jīng)過(guò)圖形變換得到△DEF嗎?若能,請(qǐng)你用軸對(duì)稱(chēng)、平移或旋轉(zhuǎn)等描述你的圖形變換過(guò)程;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某塔觀光層的最外沿點(diǎn)E為蹦極項(xiàng)目的起跳點(diǎn).已知點(diǎn)E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測(cè)得點(diǎn)E的仰角α=45°,從點(diǎn)C沿CB方向前行40米到達(dá)D點(diǎn),在D處測(cè)得塔尖A的仰角β=60°,求點(diǎn)E離地面的高度EF.(結(jié)果精確到1米,參考數(shù)據(jù)≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小麗為了測(cè)旗桿AB的高度,小麗眼睛距地面1.5米,小麗站在C點(diǎn),測(cè)出旗桿A的仰角為30°,小麗向前走了10米到達(dá)點(diǎn)E,此時(shí)的仰角為60°,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4件同型號(hào)的產(chǎn)品中,有1件不合格品和3件合格品.
(1)從這4件產(chǎn)品中隨機(jī)抽取1件進(jìn)行檢測(cè),求抽到的是不合格品的概率;
(2)從這4件產(chǎn)品中隨機(jī)抽取2件進(jìn)行檢測(cè),求抽到的都是合格品的概率;
(3)在這4件產(chǎn)品中加入x件合格品后,進(jìn)行如下試驗(yàn):隨機(jī)抽取1件進(jìn)行檢測(cè),然后放回,多次重復(fù)這個(gè)試驗(yàn),通過(guò)大量重復(fù)試驗(yàn)后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,則可以推算出x的值大約是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣3,0),經(jīng)過(guò)A、O兩點(diǎn)作半徑為的⊙C,交y軸的負(fù)半軸于點(diǎn)B.

(1)求B點(diǎn)的坐標(biāo);
(2)過(guò)B點(diǎn)作⊙C的切線交x軸于點(diǎn)D,求直線BD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從熱氣球C上測(cè)得兩建筑物A、B底部的俯角分別為30°和60度.如果這時(shí)氣球的高度CD為90米.且點(diǎn)A、D、B在同一直線上,求建筑物A、B間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案