【題目】閱讀材料后完成.

有這樣一個游戲,游戲規(guī)則如下所述:如圖①—,都是邊 長為網(wǎng)格圖,其中每條實線稱為格線,格線與格線的交 點稱為格點.在圖和圖中,可知.在圖和圖中,可知 根據(jù)上面的游戲規(guī)則,同學(xué)們開始闖關(guān)吧! 第一關(guān):在圖網(wǎng)格圖中,所給各點均為格點,經(jīng)過 給定的一點(不包括邊框上的點),在圖中畫出一條與線段垂直 的線段(或者直線),再畫出與線段平行的一條線段(或者 直線) 第二關(guān):在圖網(wǎng)格圖中,所給各點均為格點,經(jīng)過 兩對給定的點,構(gòu)造兩條互相垂直的直線.(在圖中直接畫出)

【答案】詳見解析

【解析】

第一關(guān):在圖⑤的網(wǎng)格圖中,根據(jù)圖②畫出垂直的線段,根據(jù)圖③和圖④可畫出與線段平行的線段即可.

第二關(guān):結(jié)合題中所給圖形,畫出兩條垂直的直線即可.

第一關(guān):在圖⑤的網(wǎng)格圖中,根據(jù)圖②畫出垂直的線段,根據(jù)圖③和圖④可畫出與線段平行的線段,如圖所示.

第二關(guān):結(jié)合題中所給圖形,畫出兩條垂直的直線,如圖所示.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年秋季,長白山土特產(chǎn)喜獲豐收,某土特產(chǎn)公司組織10輛汽車裝運(yùn)甲、乙、丙三種土特產(chǎn)去外地銷售,按計劃10輛車都要裝運(yùn),每輛汽車只能裝運(yùn)同一種土特產(chǎn),且必須裝滿.設(shè)裝運(yùn)甲種土特產(chǎn)的汽車有x輛,裝運(yùn)乙種土特產(chǎn)的汽車有y輛,根據(jù)下表提供的信息,解答以下問題.

1)裝運(yùn)丙種土特產(chǎn)的車輛數(shù)為(用含x、y的式子表示);

2)用含xy的式子表示這10輛汽車共裝運(yùn)土特產(chǎn)的噸數(shù);

3)求銷售完裝運(yùn)的這批土特產(chǎn)后所獲得的總利潤(用含xy的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐:

如圖1,已知△ABC為等邊三角形,點D,E分別在邊AB、AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.

(1)觀察猜想在圖1中,線段PMPN的數(shù)量關(guān)系是   MPN的度數(shù)是   ;

(2)探究證明把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,

①判斷△PMN的形狀,并說明理由;

②求∠MPN的度數(shù);

(3)拓展延伸若△ABC為直角三角形,∠BAC=90°,AB=AC=10,點DE分別在邊AB,AC上,AD=AE=4,連接DC,點M,P,N分別為DE,DC,BC的中點.把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),如圖3,請直接寫出△PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=3,AD,AE分別為△ABC的中線和角平分線,過點C作CH⊥AE于點H,并延長交AB于點F,連結(jié)DH,則線段DH的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決“最后一公里”的交通接駁問題,某市投放了大量公租自行車使用,到2014年底,全市已有公租自行車25000輛,租賃點600個,預(yù)計到2016年底,全市將有公租自行車50000輛,并且平均每個租賃點的公租自行車數(shù)量是2014年底平均每個租賃點的公租自行車數(shù)量的1.2倍,預(yù)計到2016年底,全市將有租賃點多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,CA=CB,CD=CE,∠ACB=DCE

1)求證:BE=AD;

2)當(dāng)α=90°時,取AD,BE的中點分別為點P、Q,連接CP,CQPQ,如圖②,判斷CPQ的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣4x與x軸交于O,A兩點,P為拋物線上一點,過點P的直線y=x+m與對稱軸交于點Q.

(1)這條拋物線的對稱軸是 , 直線PQ與x軸所夾銳角的度數(shù)是;
(2)若兩個三角形面積滿足SPOQ= SPAQ , 求m的值;
(3)當(dāng)點P在x軸下方的拋物線上時,過點C(2,2)的直線AC與直線PQ交于點D,求:①PD+DQ的最大值;②PDDQ的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把代數(shù)式通過配湊等手段,得到局部完全平方式,再進(jìn)行有關(guān)運(yùn)算和解題,這種解題方法叫做配方法,例如:

①用配方法分解因式:

解:原式

,利用配方法求的最小值.

解:

,

∴當(dāng)時,有最小值1

請根據(jù)上述材料解決下列問題:

1)在橫線上添加一個常數(shù),使之成為完全平方式:________

2)用配方法因式分解:

3)若,求的最小值.

4)已知,則的值為________

查看答案和解析>>

同步練習(xí)冊答案