【題目】如圖,△ABC中,∠ACB=90°,tanA=,AB=13,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△A'B'C,P為線段A′B′上的動(dòng)點(diǎn),以點(diǎn)P為圓心,PA′長(zhǎng)為半徑作⊙P,當(dāng)⊙P與△ABC的邊相切時(shí),⊙P的半徑為_____

【答案】

【解析】

先根據(jù)直角三角形的性質(zhì)和勾股定理,結(jié)合sinA=513,AC=12求出ABBC的長(zhǎng),再對(duì)⊙PABC相切的位置進(jìn)行討論;

①如圖1中,當(dāng)⊙P與直線AC相切于點(diǎn)Q時(shí),連接PQ,根據(jù)題意可得PQCA,從而得到PQCA'=PB'A'B',代入已知條件求出PQ,即為圓的半徑;

②如圖2中,當(dāng)⊙PAB相切于點(diǎn)T時(shí),易證A′、B′、T共線,從而得到ABT∽△ABC.利用相似三角形對(duì)應(yīng)邊成比例得到A'TAC=A'BAB,求出A′T確定圓的直徑,進(jìn)而求出半徑.

∵在ABC中,∠ACB=90°,sinA=513,AC=12,

BC=5,AB=13.

①當(dāng)⊙P與直線AC相切于點(diǎn)Q時(shí),連接PQ,如圖1所示:

設(shè)PQ=PA′=r.

PQCA,

PQ:CA'=PB':A'B'

r:12=(13r13,

r=

②當(dāng)⊙PAB相切于點(diǎn)T時(shí),如圖2所示,易證A′、B′、T共線.

∵△ABT∽△ABC,

A'T:AC=A'B:AB,

A'T:12=17:13,

AT= ,

r=A′T=.

綜上所述,⊙P的半徑為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)B,不含端點(diǎn)C),連接AD,過(guò)點(diǎn)CCEADE,連接BE,在點(diǎn)D移動(dòng)的過(guò)程中,BE的取值范圍是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】O 的直徑 AB 長(zhǎng)為 10,弦 MNAB,將⊙O 沿 MN 翻折,翻折后點(diǎn) B 的對(duì)應(yīng)點(diǎn)為點(diǎn) B′,若 AB′=2,MB′的長(zhǎng)為( )

A. 2 B. 2或 2 C. 2 D. 2 或 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)在坐標(biāo)軸上,,且,將沿著翻折到

1)求點(diǎn)的坐標(biāo);

2)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿軸以個(gè)單位秒的速度向終點(diǎn)運(yùn)動(dòng),過(guò)點(diǎn)作直線垂直于軸,分別交直線、直線于點(diǎn)、,設(shè)線段的長(zhǎng)為,點(diǎn)運(yùn)動(dòng)時(shí)間為秒,求的關(guān)系式,并寫出的取值范圍.

(3如圖2在(2)的條件下,點(diǎn)為點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),點(diǎn)在直線上,是否存在點(diǎn),使得以、、為頂點(diǎn)的四邊形為平行四邊形;若存在,求出值和點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某地質(zhì)公園中有兩座相鄰小山.游客需從左側(cè)小山山腳E處乘坐豎直觀光電梯上行100米到達(dá)山頂C處,然后既可以沿水平觀光橋步行到景點(diǎn)P處,也可以通過(guò)滑行索道到達(dá)景點(diǎn)Q處,在山頂C處觀測(cè)坡底A的俯角為75°,觀測(cè)Q處的俯角為30°,已知右側(cè)小山的坡角為30°(圖中的點(diǎn)C,E,A,B,P,Q均在同一平面內(nèi),點(diǎn)A,Q,P在同一直線上)

(1)求∠CAP的度數(shù)及CP的長(zhǎng)度;

(2)P,Q兩點(diǎn)之間的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D是⊙O上一點(diǎn),直線AE經(jīng)過(guò)點(diǎn)D,直線AB經(jīng)過(guò)圓心O,交⊙O于B,C兩點(diǎn),CE⊥AE,垂足為點(diǎn)E,交⊙O于點(diǎn)F,∠BCD=∠DCF

(1)求∠A+∠BOD的度數(shù);

(2)若sin∠DCE=,⊙O的半徑為5,求線段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接:國(guó)家衛(wèi)生城市復(fù)檢,某市環(huán)衛(wèi)局準(zhǔn)備購(gòu)買AB兩種型號(hào)的垃圾箱,通過(guò)市場(chǎng)調(diào)研得知:購(gòu)買3個(gè)A型垃圾箱和2個(gè)B型垃圾箱共需540元,購(gòu)買2個(gè)A型垃圾箱比購(gòu)買3個(gè)B型垃圾箱少用160元.

1)求每個(gè)A型垃圾箱和B型垃圾箱各多少元?

2)該市現(xiàn)需要購(gòu)買AB兩種型號(hào)的垃圾箱共30個(gè),其中買A型垃圾箱不超過(guò)16個(gè).

①求購(gòu)買垃圾箱的總花費(fèi)w(元)與A型垃圾箱x(個(gè))之間的函數(shù)關(guān)系式;

②當(dāng)買A型垃圾箱多少個(gè)時(shí)總費(fèi)用最少,最少費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次男子馬拉松長(zhǎng)跑比賽中,隨機(jī)抽得12名選手所用的時(shí)間(單位:分鐘)得到如下樣本數(shù)據(jù):140 146 143 175 125 164 134 155 152 168 162 148

(1)計(jì)算該樣本數(shù)據(jù)的中位數(shù)和平均數(shù);

(2)如果一名選手的成績(jī)是147分鐘,請(qǐng)你依據(jù)樣本數(shù)據(jù)的中位數(shù),推斷他的成績(jī)?nèi)绾危?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形的頂點(diǎn)分別在軸的正半軸上,點(diǎn)在反比例函數(shù)的第一象限內(nèi)的圖像上,,動(dòng)點(diǎn)軸的上方,且滿足.

(1)若點(diǎn)在這個(gè)反比例函數(shù)的圖像上,求點(diǎn)的坐標(biāo);

(2)連接,求的最小值;

(3)若點(diǎn)是平面內(nèi)一點(diǎn),使得以為頂點(diǎn)的四邊形是菱形,則請(qǐng)你直接寫出滿足條件的所有點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案