【題目】觀察下列兩個等式:,.給出定義如下:使等式成立的一對有理數(shù),共生有理數(shù)對,記為.如:數(shù)對,都有共生有理數(shù)對

1)數(shù)對,中是共生有理數(shù)對的是

2)請再寫出另外一對符合條件的共生有理數(shù)對 (不能與題目中已有的重復(fù)).

3)小丁說:共生有理數(shù)對,則一定是共生有理數(shù)對請你用(2)中寫出的共生有理數(shù)對驗證小丁的說法.

【答案】1;(2;(3)見解析

【解析】

1)根據(jù)共生有理數(shù)對的定義分別驗證兩組數(shù)對即可得出答案;

2)根據(jù)共生有理數(shù)對的定義即可得出答案;

3)根據(jù)共生有理數(shù)對的定義即可得出答案.

解:(1)∵

不是共生有理數(shù)對

共生有理數(shù)對

故答案為

2)由題意可得:

3)∵

共生有理數(shù)對

共生有理數(shù)對

故小丁的說法正確

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x(x-2)=x-2①與一元一次方程2x+1=2a-x②.

(1)若方程①的一個根是方程②的根,求a的值;

(2)若方程②的根不小于方程①兩根中的較小根且不大于方程①兩根中的較大根,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10)閱讀下列材料:

1)關(guān)于x的方程x2-3x+1=0x≠0)方程兩邊同時乘以得: , ,

2a3+b3=a+b)(a2-ab+b2);a3-b3=a-b)(a2+ab+b2).

根據(jù)以上材料,解答下列問題:

1x2-4x+1=0x≠0),則= ______ , = ______ , = ______ ;

22x2-7x+2=0x≠0),求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校準備購進一批節(jié)能燈,已知1A型節(jié)能燈和3B型節(jié)能燈共需26元;3A型節(jié)能燈和2B型節(jié)能燈共需29元.

(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;

(2)學校準備購進這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,DAC邊中點,過D點作DEDF,交ABE,交BCF,連接BD.

(1)求證:△CDF≌△BED

(2)AE=4,FC=3,求AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:銳角ABC中,C2B,AD是高,求證:AC+CDBD

線段和差,通常用截長或補短法證明,下面是甲、乙兩位同學的思路,請你按他們的思路,給出一種證明.

甲:截長法,在DB上截取DEDC,連AE,去證BEAC;

乙:補短法,延長DCE,使CECA,連接AE,去證DBDE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程.

(1)求證:無論k為何值,方程總有實數(shù)根.

(2)設(shè)是方程的兩個根,記,S的值能為2嗎?若能,求出此時k的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=90°,點CD分別在射線OA、OB上,CE是∠ACD的平分線,CE的反向延長線與∠CDO的平分線交于點F

1)當∠OCD=50°(圖1),試求∠F

2)當C、D在射線OA、OB上任意移動時(不與點O重合)(圖2),∠F的大小是否變化?若變化,請說明理由;若不變化,求出∠F

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點EBC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是(  )

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

同步練習冊答案