【題目】完成下面的證明.
已知,如圖所示,BCE,AFE是直線,
AB∥CD,∠1=∠2,∠3=∠4.
求證:AD∥BE
證明:∵ AB∥CD (已知)
∴ ∠4 =∠ ( )
∵ ∠3 =∠4 (已知)
∴ ∠3 =∠ ( )
∵ ∠1 =∠2 (已知)
∴ ∠1+∠CAF =∠2+ ∠CAF ( )
即:∠ =∠ .
∴ ∠3 =∠ ( )
∴ AD∥BE ( )
【答案】詳見解析.
【解析】試題分析:由AB∥DC,利用兩直線平行,同位角角相等得到一對角相等,再由已知角相等,利用等量代換得到∠3=∠BAE,根據(jù)∠1=∠2,利用等式的性質(zhì)得到∠BAE=∠CAD,等量代換得到一對內(nèi)錯角相等,利用內(nèi)錯角相等,兩直線平行即可得證.
證明:∵AB∥DC(已知),
∴∠4=∠BAE(兩直線平行,同位角相等),
∵∠3=∠4(已知),
∴∠3=∠BAE(等量代換),
∵∠1=∠2(已知),
∴∠1+∠CAE=∠2+∠CAE(等式性質(zhì)),
即∠BAE=∠CAD,
∴∠3=∠CAD(等量代換),
∴AB∥CD( 內(nèi)錯角相等,兩直線平行).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=x+2交y軸于點A1 , 在x軸正方向上取點B1 , 使OB1=0A1;過點B1作A2B1⊥x軸,交l于點A2 , 在x軸正方向上取點B2 , 使B1B2=B1A2;過點B2作A3B2⊥x軸,交l于點A3 , 在x軸正方向上取點B3 , 使B2B3=B2A3記△OA1B1面積為S1,△B1A2B2面積為S2 , △B2A3B3面積為S3 , …則S2018等于.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△A'B'C'是由△ABC平移得到的,已知△ABC中任意一點P(x0,y0)經(jīng)平移后的對應(yīng)點為點P'(x0+5,y0- 2).
(1)已知點A(-1,2)、B(-4,5)、C(-3,0),請寫出點A'、B'、C'的坐標(biāo);
(2)試說明△A'B'C'是如何由△ABC平移得到的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD四個頂點的坐標(biāo)分別是A(1,2),B(4,2),C(4, ),D(1, ).
(1)求這個長方形的面積;
(2)將這個長方形向下平移2個單位長度,再向右平移1個單位長度,得到長方形A′B′C′D′,求長方形A′B′C′D′四個頂點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個數(shù)是( )
①一個有理數(shù)不是整數(shù)就是分?jǐn)?shù);②一個有理數(shù)不是正數(shù)就是負(fù)數(shù);③一個整數(shù)不是正的就是負(fù)的;④一個分?jǐn)?shù)不是正的,就是負(fù)的.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,在△ABC中,∠B<∠C,AD平分∠BAC,E是線段AD(除去端點A、D)上一動點,EF⊥BC于點F.
(1)若∠B=40°,∠DEF=10°,求∠C的度數(shù).
(2)當(dāng)E在AD上移動時,∠B、∠C、∠DEF之間存在怎樣的等量關(guān)系?請寫出這個等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,且∠EAF=45°,將△ABE繞點A順時針旋轉(zhuǎn)90°,使點E落在點E'處,則下列判斷不正確的是( )
A.△AEE′是等腰直角三角形 B.AF垂直平分EE'
C.△E′EC∽△AFD D.△AE′F是等腰三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com