【題目】如圖,正方形ABCB1中,AB=1,AB與直線l的夾角為30°,延長CB1交直線l于點(diǎn)A1 , 作正方形A1B1C1B2 , 延長C1B2交直線l于點(diǎn)A2 , 作正方形A2B2C2B3 , 延長C2B3交直線l于點(diǎn)A3 , 作正方形A3B3C3B4 , …,依此規(guī)律,則A2016A2017= .
【答案】2×31008
【解析】解:∵四邊形ABCB1是正方形, ∴AB=AB1 , AB∥CB1 ,
∴AB∥A1C,
∴∠CA1A=30°,
∴A1B1= ,AA1=2,
∴A1B2=A1B1= ,
∴A1A2=2 ,
同理:A2A3=2( )2 ,
A3A4=2( )3 ,
…
∴AnAn+1=2( )n ,
∴A2016A2017=2( )2016=2×31008 .
故答案為:2×31008 .
由四邊形ABCB1是正方形,得到AB=AB1 , AB∥CB1 , 于是得到AB∥A1C,根據(jù)平行線的性質(zhì)得到∠CA1A=30°,解直角三角形得到A1B1= ,AA1=2,同理:A2A3=2( )2 , A3A4=2( )3 , 找出規(guī)律AnAn+1=2( )n , 答案即可求出.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 與軸、軸分別交于,點(diǎn)的坐標(biāo)為 ,是直線在第一象限內(nèi)的一個動點(diǎn)
(1)求⊿的面積與的函數(shù)解析式,并寫出自變量的取值范圍?
(2)過點(diǎn)作軸于點(diǎn), 作軸于點(diǎn),連接,是否存在一點(diǎn)使得的長最小,若存在,求出的最小值;若不存在,請說明理由 ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司從2014年開始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的成本不斷降低,具體數(shù)據(jù)如下表:
年度 | 投入技改資金萬元 | 產(chǎn)品成本萬元件 |
2014 |
|
|
2015 | 3 | 12 |
2016 | 4 | 9 |
2017 |
| 8 |
(1)分析表中數(shù)據(jù),請從一次函數(shù)和反比例函數(shù)中確定一個函數(shù)表示其變化規(guī)律,直接寫出y與x的函數(shù)關(guān)系式;
(2)按照這種變化規(guī)律,若2018年已投入資金6萬元.
①預(yù)計2018年每件產(chǎn)品成本比2017年降低多少萬元?
②若計劃在2018年把每件產(chǎn)品成本降低到5萬元,則還需要投入技改資金多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為4的等邊三角形,D為AB邊的中點(diǎn),以CD為直徑畫圓,則圖中陰影部分的面積為(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E在AC上,∠AEB=∠ABC.
(1)圖1中,作∠BAC的角平分線AD,分別交CB、BE于D、F兩點(diǎn),求證:∠EFD=∠ADC;
(2)圖2中,作△ABC的外角∠BAG的角平分線AD,分別交CB、BE的延長線于D、F兩點(diǎn),試探究(1)中結(jié)論是否仍成立?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長線交于點(diǎn)D,DE⊥AD且與AC的延長線交于點(diǎn)E.
(1)求證:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,客輪在海上以30km/h的速度由B向C航行,在B處測得燈塔A的方向角為北偏東80°,測得C處的方向角為南偏東25°,航行1小時后到達(dá)C處,在C處測得A的方向角為北偏東20°,則C到A的距離是( )
A.15 km
B.15 km
C.15( + )km
D.5( +3 )km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,已知線段AB上有兩點(diǎn)C,D,且AC=BD,M,N分別是線段AC,AD的中點(diǎn),若AB=acm,AC=BD=bcm,且a,b滿足(a-10)2+=0.
(1)求AB,AC的長度;
(2)求線段MN的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為D,E,BE與CD相交于點(diǎn)O,且∠1=∠2,則下列結(jié)論正確的個數(shù)為( )
①B=∠C;②△ADO≌△AEO;③△BOD≌△COE;④圖中有四組三角形全等.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com