【題目】如圖,AB為半圓O在直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,連接OD、OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DECD,正確的有( )
A.2個 B.3個 C.4個 D.5個
【答案】C
【解析】
試題分析:連接OE,由AD,DC,BC都為圓的切線,根據(jù)切線的性質(zhì)得到三個角為直角,且利用切線長定理得到DE=DA,CE=CB,由CD=DE+EC,等量代換可得出CD=AD+BC,選項②正確;由AD=ED,OD為公共邊,利用HL可得出直角三角形ADO與直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而這四個角之和為平角,可得出∠DOC為直角,選項①正確;由∠DOC與∠DEO都為直角,再由一對公共角相等,利用兩對對應角相等的兩三角形相似,可得出三角形DEO與三角形DOC相似,由相似得比例可得出OD2=DECD,選項⑤正確;由△AOD∽△BOC,可得===,選項③正確;由△ODE∽△OEC,可得,選項④錯誤.
解:連接OE,如圖所示:
∵AD與圓O相切,DC與圓O相切,BC與圓O相切,
∴∠DAO=∠DEO=∠OBC=90°,
∴DA=DE,CE=CB,AD∥BC,
∴CD=DE+EC=AD+BC,選項②正確;
在Rt△ADO和Rt△EDO中,,
∴Rt△ADO≌Rt△EDO(HL),
∴∠AOD=∠EOD,
同理Rt△CEO≌Rt△CBO,
∴∠EOC=∠BOC,
又∠AOD+∠DOE+∠EOC+∠COB=180°,
∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,選項①正確;
∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,
∴△EDO∽△ODC,
∴=,即OD2=DCDE,選項⑤正確;
∵∠AOD+∠COB=∠AOD+∠ADO=90°,
∠A=∠B=90°,
∴△AOD∽△BOC,
∴===,選項③正確;
同理△ODE∽△OEC,
∴,選項④錯誤;
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】小明在對代數(shù)式2x2+ax﹣y+6﹣(bx2+3x﹣5y+1)化簡后,沒有含x的項,請求出代數(shù)式(a﹣b)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利用網(wǎng)格畫圖:
(1)過點C畫AB的平行線CD;
(2)過點C畫AB的垂線,垂足為E;
(3)線段CE的長度是點C到直線 的距離;
(4)連接CA、CB,在線段CA、CB、CE中,線段 最短,理由: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,a、b、c分別是∠A、∠B、∠C的對邊,下列條件不能判斷△ABC是直角三角形的是( )
A.∠A=∠C﹣∠B
B.a(chǎn):b:c=2:3:4
C.a(chǎn)2=b2﹣c2
D.a(chǎn)=,b=,c=1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班有48位同學,在一次數(shù)學檢測中,分數(shù)只取整數(shù),統(tǒng)計其成績,繪制出頻數(shù)分布直方圖(橫半軸表示分數(shù),把50.5分到100.5分之間的分數(shù)分成5組,組距是10分,縱半軸表示頻數(shù))如圖所示,從左到右的小矩形的高度比是1:3:6:4:2,則由圖可知,其中分數(shù)在70.5~80.5之間的人數(shù)是( )
A.9 B.18 C.12 D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某糧店出售的三種品牌的面粉袋上,分別標有質(zhì)量為(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字樣,從中任意拿出兩袋,它們的質(zhì)量最多相差 ;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(1)如果點A表示的數(shù)-1,將點A向右移動4個單位長度,那么終點B表示的數(shù)是 ,A、B兩點間的距離是 .
(2)如果點A表示的數(shù)2,將點A向左移動6個單位長度,再向右移動3個單位長度,那么終點B表示的數(shù)是 ,A、B兩點間的距離是 .
(3)如果點A表示的數(shù)m,將點A向右移動n個單位長度,再向左移動p個單位長度,那么請你猜想終點B表示的數(shù)是 ,A、B兩點間的距離是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com