【題目】在平面直角坐標(biāo)系xOy中,已知拋物線的頂點(diǎn)坐標(biāo)為(2,0),且經(jīng)過(guò)點(diǎn)(4,1),如圖,直線y=x與拋物線交于A、B兩點(diǎn),直線l為y=﹣1.
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使|PA﹣PB|取得最大值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)已知F(x0,y0)為平面內(nèi)一定點(diǎn),M(m,n)為拋物線上一動(dòng)點(diǎn),且點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等,求定點(diǎn)F的坐標(biāo).
【答案】(1)y=(x﹣2)2;(2)P(2,﹣);(3)F(2,1).
【解析】
(1)設(shè)函數(shù)解析式為y=a(x﹣2)2,將點(diǎn)(4,1)代入,即可求解析式;
(2)聯(lián)立方程求出對(duì)稱軸x=2,點(diǎn)A關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)為 當(dāng)點(diǎn)P,A',B共線時(shí),|PA﹣PB|取得最大值;待定系數(shù)法求出直線A'B的解析式即可求點(diǎn)P;
(3)由 點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等,得到將代入,整理得到由m是任意的,所以有方程組,求解即可.
解:(1)設(shè)函數(shù)解析式為y=a(x﹣2)2,
將點(diǎn)(4,1)代入,
得到a=,
∴
(2)與的交點(diǎn)
對(duì)稱軸x=2,
點(diǎn)A關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)為
當(dāng)點(diǎn)P,A',B共線時(shí),|PA﹣PB|取得最大值;
設(shè)直線A'B的解析式為y=kx+b,
∴
∴
∴
∴
(3)∵點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等,
∴
∴
∵,
∴
∴
∴
∴F(2,1);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,△ABC的頂點(diǎn)都在格點(diǎn)上,請(qǐng)解答下列問(wèn)題:
(1)①作出△ABC向左平移4個(gè)單位長(zhǎng)度后得到的△A1B1C1, 并寫(xiě)出點(diǎn)C1的坐標(biāo);
②作出△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2, 并寫(xiě)出點(diǎn)C2的坐標(biāo);
(2)已知△ABC關(guān)于直線l對(duì)稱的△A3B3C3的頂點(diǎn)A3的坐標(biāo)為(-4,-2),請(qǐng)直接寫(xiě)出直線l的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在中,,.
(1)如圖1,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連結(jié)、,的平分線交于點(diǎn),連結(jié).
①求證:;②用等式表示線段、、之間的數(shù)量關(guān)系(直接寫(xiě)出結(jié)果);
(2)在圖2中,若將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連結(jié)、,的平分線交的延長(zhǎng)線于點(diǎn),連結(jié).請(qǐng)補(bǔ)全圖形,并用等式表示線段、、之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),連接CP,過(guò)點(diǎn)P作PE⊥CP交AB于點(diǎn)D,且PE=PC,過(guò)點(diǎn)P作PF⊥OP且PF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.
(1)直接寫(xiě)出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):_____;
(2)四邊形BFDE的面積記為S,當(dāng)t為何值時(shí),S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1,2,3,4,另外有一個(gè)可以自由旋轉(zhuǎn)的圓盤(pán),被分成面積相等的3個(gè)扇形區(qū)域,分別標(biāo)有數(shù)字1,2,3(如圖所示).
(1)從口袋中摸出一個(gè)小球,所摸球上的數(shù)字大于2的概率為 ;
(2)小龍和小東想通過(guò)游戲來(lái)決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一人轉(zhuǎn)動(dòng)圓盤(pán),如果所摸球上的數(shù)字與圓盤(pán)上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認(rèn)為游戲公平嗎?請(qǐng)用樹(shù)狀圖或列表法說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開(kāi)展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛(ài)好”的問(wèn)題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加;@球隊(duì),請(qǐng)直接寫(xiě)出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC=5,BC=8,點(diǎn)M是△ABC的中線AD上一點(diǎn),以M為圓心作⊙M.設(shè)半徑為r
(1)如圖1,當(dāng)點(diǎn)M與點(diǎn)A重合時(shí),分別過(guò)點(diǎn)B,C作⊙M的切線,切點(diǎn)為E,F.求證:BE=CF;
(2)如圖2,若點(diǎn)M與點(diǎn)D重合,且半圓M恰好落在△ABC的內(nèi)部,求r的取值范圍;
(3)當(dāng)M為△ABC的內(nèi)心時(shí),求AM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)交軸于點(diǎn)、,交軸于點(diǎn),在軸上有一點(diǎn),連接.
(1)求二次函數(shù)的表達(dá)式;
(2)若點(diǎn)為拋物線在軸負(fù)半軸上方的一個(gè)動(dòng)點(diǎn),求面積的最大值;
(3)拋物線對(duì)稱軸上是否存在點(diǎn),使為等腰三角形,若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com