【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.
(1)證明:DF是⊙O的切線;
(2)若AC=3AE,FC=6,求AF的長.
【答案】(1)見解析;(2)AF=3.
【解析】
(1)連接OD,根據(jù)等邊對等角性質(zhì)和平行線的判定和性質(zhì)證得OD⊥DF,從而證得DF是⊙O的切線;
(2)根據(jù)圓周角定理、勾股定理得出BE=2AE,CE=4AE,然后根據(jù)勾股定理求得BE=2AE,再根據(jù)相似三角形的判定與性質(zhì),即可得到答案.
(1)證明:如圖1,連接OD,
∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切線;
(2)解:如圖2,連接BE,AD,
∵AB是直徑,
∴∠AEB=90°,
∵AB=AC,AC=3AE,
∴AB=3AE,CE=4AE,
∴,
∴,
∵∠DFC=∠AEB=90°,
∴DF∥BE,
∴△DFC∽△BEC,
∴ ,
∵CF=6,
∴DF=3,
∵AB是直徑,
∴AD⊥BC,
∵DF⊥AC,
∴∠DFC=∠ADC=90°,∠DAF=∠FDC,
∴△ADF∽△DCF,
∴,
∴DF2=AFFC,
∴,
∴AF=3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰△ABC的直角邊AB=BC=10cm,點P、Q分別從A、C兩點同時出發(fā),均以1cm/秒的相同速度作直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設(shè)P點運動時間為t,△PCQ的面積為S.
(1)求出S關(guān)于t的函數(shù)關(guān)系式;
(2)當(dāng)點P運動幾秒時,S△PCQ=S△ABC?
(3)作PE⊥AC于點E,當(dāng)點P、Q運動時,線段DE的長度是否改變?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 閱讀:我們約定,在平面直角坐標系中,經(jīng)過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.
問題與探究:如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過B、C兩點,頂點D在正方形內(nèi)部.
(1)直接寫出點D(m,n)所有的特征線;
(2)若點D有一條特征線是y=x+1,求此拋物線的解析式;
(3)點P是AB邊上除點A外的任意一點,連接OP,將△OAP沿著OP折疊,點A落在點A′的位置,當(dāng)點A′在平行于坐標軸的D點的特征線上時,滿足(2)中條件的拋物線向下平移多少距離,其頂點落在OP上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,點D是邊BC上(不與B,C重合)一動點,∠ADE=∠B=,DE交AC于點E,若△DCE為直角三角形,則BD的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如右圖,正方形ABCD的邊長為2,點E是BC邊上一點,以AB為直徑在正方形內(nèi)作半圓
O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線與直線交于A, B兩點,其中點A在x軸上.
(1)用含有b的代數(shù)式表示c;
(2)① 若點B在第一象限,且,求拋物線的解析式;
② 若,結(jié)合函數(shù)圖象,直接寫出b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com