【題目】已知:如圖,在山腳的處測得山頂的仰角為,沿著坡度為的斜坡前進米到處(即,米),測得的仰角為,求此山的高度.(答案保留根號)
(參考數(shù)據(jù):,,,,,)
【答案】此山的高度為米
【解析】
首先根據(jù)題意分析圖形,作DE⊥AB于E,作DF⊥BC于F,構(gòu)造兩個直角三角形,分別求解可得DF與AE的值,再利用圖形關(guān)系,進而可求出答案.
解答:如圖,作DE⊥AB于E,作DF⊥BC于F,
∵在Rt△CDF中,∠DCF=30,CD=400米,
∴DF=CDsin30=×400=200(米),
CF=CDcos30=×400=200(米).
∵在Rt△ADE中,∠ADE=63,設(shè)DE=x米,
∴AE=tan63x=x(米).
在矩形DFBE中,BE=DF=200米,
∵在Rt△ACB中,∠ACB=53,
∴tan53=,即:=,
∴x=250,
∴AB=AE+BE=(250)+200=600250(米).
答:此山的高度AB為(600250)米.
故答案為:(600250)米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠BAC的平分線交⊙O于點D,交BC于點E(BE>EC),且BD=2.過點D作DF∥BC,交AB的延長線于點F.
(1)求證:DF為⊙O的切線;
(2)若∠BAC=60°,DE=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點(1,3)在函數(shù)的圖象上,正方形的邊在軸上,點是對角線的中點,函數(shù)的圖象又經(jīng)過、兩點,則點的橫坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人進行羽毛球比賽,把球看成點,其飛行的路線為拋物線的一部分.如圖建立平面直角坐標系,甲在O點正上方1m的P處發(fā)球,羽毛球飛行的高度y(m)與羽毛球距離甲站立位置(點O)的水平距離x(m)之間滿足函敗表達式y=a(x﹣4)2+h.已知點O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m,球場邊界距點O的水平距離為10m.
(1)當a=﹣時,求h的值,并通過計算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,乙在另一側(cè)距球網(wǎng)水平距離lm處起跳扣球沒有成功,球在距球網(wǎng)水平距離lm,離地面高度2.2m處飛過,通過計算判斷此球會不會出界?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°、AD是角平分線,E為AC邊上的點,DE=DB,下列結(jié)論:①∠DEA+∠B=180°;② ∠CDE=∠CAB;③ AC= (AB+AE);④ S△ADC=S四邊形ABDE,其中正確的結(jié)論個數(shù)為( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(3,m),B(﹣2,﹣3)是直線AB和某反比例函數(shù)的圖象的兩個交點.
(1)求直線AB和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出當x滿足什么范圍時,直線AB在雙曲線的下方;
(3)反比例函數(shù)的圖象上是否存在點C,使得△OBC的面積等于△OAB的面積?如果不存在,說明理由;如果存在,求出滿足條件的所有點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則B2的坐標為_____;點B2016的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E為 BC上的點,F(xiàn)為 CD邊上的點,且AE=AF,AB=4,設(shè)EC=x,△AEF 的面積為y,則y與x之間的函數(shù)關(guān)系式是____.
查看答案和解析>>