【題目】如圖1,四邊形ABCD是正方形,點E是邊BC上一點,點F在射線CM上,∠AEF=90°,AE=EF,過點F作射線BC的垂線,垂足為H,連接AC.
(1)試判斷BE與FH的數(shù)量關系,并說明理由;
(2)求證:∠ACF=90°;
(3)連接AF,過A、E、F三點作圓,如圖2,若EC=4,∠CEF=15°,求的長.
【答案】(1)BE=FH;(2)證明見解析(3)2π
【解析】
試題分析:(1)利用ABE≌△EHF求證BE=FH,
(2)由BE=FH,AB=EH,推出CH=FH,得到∠HCF=45°,由四邊形ABCD是正方形,所以∠ACB=45°,得出∠ACF=90°,
(3)作CP⊥EF于P,利用相似三角形△CPE∽△FHE,求出EF,利用公式求出的長.
試題解析:(1)BE=FH.
證明:∵∠AEF=90°,∠ABC=90°,
∴∠HEF+∠AEB=90°,∠BAE+∠AEB=90°,
∴∠HEF=∠BAE,
在△ABE和△EHF中,
,
∴△ABE≌△EHF(AAS)
∴BE=FH.
(2)由(1)得BE=FH,AB=EH,
∵BC=AB,
∴BE=CH,
∴CH=FH,
∴∠HCF=45°,
∵四邊形ABCD是正方形,
∴∠ACB=45°,
∴∠ACF=180°﹣∠HCF﹣∠ACB=90°.
(3)由(2)知∠HCF=45°,∴CF=FH.
∠CME=∠HCF﹣∠CEF=45°﹣15°=30°.
如圖2,過點C作CP⊥EF于P,則CP=CF=FH.
∵∠CEP=∠FEH,∠CPE=∠FHE=90°,
∴△CPE∽△FHE.
∴,即,
∴EF=4.
∵△AEF為等腰直角三角形,∴AF=8.
取AF中點O,連接OE,則OE=OA=4,∠AOE=90°,
∴的弧長為: =2π.
科目:初中數(shù)學 來源: 題型:
【題目】植樹節(jié)期間,某單位欲購進A、B兩種樹苗,若購進A種樹苗3棵,B種樹苗5棵,需2100元,若購進A種樹苗4棵,B種樹苗10棵,需3800元.
(1)求購進A、B兩種樹苗的單價;
(2)若該單位準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把6800000,用科學記數(shù)法表示為( 。
A. 6.8×105 B. 6.8×106 C. 6.8×107 D. 6.8×108
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一件商品按成本價提高40%后標價,再打8折(標價的80%)銷售,售價為240元,設這件商品的成本價為x元,根據(jù)題意,下面所列的方程正確的是( )
A. 40%x·80%=240
B. (1+40%)x·80%=240
C. 240×40%×80%=x
D. 40%x=240×80%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與雙曲線y=交于A、B兩點,點B的坐標為(-4,-2),C為第一象限內(nèi)雙曲線y=上一點,且點C在直線的上方.
(1)求雙曲線的函數(shù)解析式;
(2)若△AOC的面積為6,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種藥品說明書上標明保存溫度是(20±3)0C,則該藥品在( )范圍內(nèi)保存最合適.
A. 170C~200C B. 200C ~230C C. 170C ~230C D. 170C ~240C
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列等式變形不正確的是( )
A. 由x=y,得到x+2=y+2
B. 由2a﹣3=b﹣3,得到2a=b
C. 由m=n,得到2am=2an
D. 由am=an,得到m=n
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com