【題目】如圖,折疊長方形紙片ABCD,使點D落在邊BC上的點F處,折痕為AE.已知AB6cm,BC10cm.則EC的長為_____cm

【答案】

【解析】

根據(jù)長方形的性質可得ADBC,根據(jù)翻轉變換的性質可得AFAD,EFDE,利用勾股定理列式求出BF,再求出FC,然后設DEx,表示出EC,在RtCEF中,利用勾股定理列方程求出x的值,即可解決問題.

∵四邊形ABCD是長方形,

ADBC10cm,CDAB6cm,

∵長方形紙片沿AE折疊,點D落在BC邊的點F處,

AFAD10cm,EFDE

RtABF中,BF8cm

FCBCBF1082cm,

DEx,則ECCDDE6x,

RtCEF中,EC2+FC2EF2

即(6x2+22x2,

解得x,

ECCDDE6,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】轉化是數(shù)學中的一種重要思想,即把陌生的問題轉化成熟悉的問題,把復雜的問題轉化成簡單的問題,把抽象的問題轉化為具體的問題.

(1)請你根據(jù)已經學過的知識求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);

(2)若對圖(1)中星形截去一個角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);

(3)若再對圖(2)中的角進一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫出結論,不需要寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在《朗讀者》節(jié)目的影響下,某中學開展了好書伴我成長讀書活動.為了解5月份八年級300名學生的讀書情況,隨機調查了八年級50名學生讀書的冊數(shù),統(tǒng)計數(shù)據(jù)如下表所示:

冊數(shù)

0

1

2

3

4

人數(shù)

3

13

16

17

1

關于這組數(shù)據(jù),下列說法正確的是 ( )

A. 中位數(shù)是2 B. 眾數(shù)是17 C. 平均數(shù)是3 D. 方差是2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,O是AB上一點,以OA為半徑的⊙O經過點D。

(1)求證:BC是⊙O切線;
(2)若BD=5, DC=3,求AC的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是ABCD邊AB上的一點,射線CP交DA的延長線于點E,則圖中相似的三角形有( )

A.0對
B.1對
C.2對
D.3對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在山頂上有一座電視塔,在塔頂B處,測得地面上一點A的俯角α=60°,在塔底C處測得的俯角β=45°,已知BC=60m,求山高CD(精確到1m, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列解題過程的空白處填上適當?shù)膬热荩ㄍ评淼睦碛苫驍?shù)學表達式)

如圖,∠1∠21800∠3∠4

求證:EFGH

證明:∵∠1∠21800(已知),

∠AEG ∠1(對頂角相等)

,

∴AB∥CD ),

∴∠AEG ),

∵∠3∠4(已知),

∴∠3∠AEG∠4 ,(等式性質)

∴EF∥GH

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O(0,0),A(0,1)是正方形OAA1B的兩個頂點,以OA1對角線為邊作正方形OA1A2B1 , 再以正方形的對角線OA2作正方形OA1A2B1 , …,依此規(guī)律,則點A8的坐標是( )

A.(﹣8,0)
B.(0,8)
C.(0,8
D.(0,16)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用四個完全一樣的長、寬分別為x、y的長方形紙片圍成一個大正方形ABCD,中間是空的小正方形EFGH.若AB=a,EF=b,判斷以下關系式:① x + y=a;② xy=b;③ a2b2=2xy;④ x2y2=ab;⑤ x2 + y2=,其中正確的有__________.

查看答案和解析>>

同步練習冊答案