拋物線y=x2-2x-3與兩坐標軸有三個交點,則經(jīng)過這三個點的外接圓的半徑 為     
設拋物線y=x2-2x-3與y軸的交點為A,與x軸的交點分別為B、C兩點,
∵令x=0,則y=-3,∴A(0,-3);∵令y=0,則x2-2x-3=0,解得x=3或x=-1,
∴B(3,0),C(-1,0),設經(jīng)過這三個點的外接圓的圓心為M(m,n),
,解得:,∴M(1,-1),
∴外接圓的半徑AM=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)圖象的頂點在原點,對稱軸為軸.一次函數(shù)的圖象與二次函數(shù)的圖象交于兩點(的左側),且點坐標為.平行于軸的直線點.

(1)求一次函數(shù)與二次函數(shù)的解析式;
(2)判斷以線段為直徑的圓與直線的位置關系,并給出證明;
(3)把二次函數(shù)的圖象向右平移個單位,再向下平移個單位,二次函數(shù)的圖象與軸交于兩點,一次函數(shù)圖象交軸于點.當為何值時,過三點的圓的面積最?最小面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線軸交于A、B兩點(點A在點B左側),與y軸交于點C,且當=O和=4時,y的值相等。直線y=4x-16與這條拋物線相交于兩點,其中一點的橫坐標是3,另一點是這條拋物線的頂點M。

(1)求這條拋物線的解析式;
(2)P為線段OM上一點,過點P作PQ⊥軸于點Q。若點P在線段OM上運動(點P不與點O重合,但可以與點M重合),設OQ的長為t,四邊形PQCO的面積為S,求S與t之間的函數(shù)關系式及自變量t的取值范圍;
(3)隨著點P的運動,四邊形PQCO的面積S有最大值嗎?如果S有最大值,請求出S的最大值并指出點Q的具體位置和四邊形PQCO的特殊形狀;如果S沒有最大值,請簡要說明理由;
(4)隨著點P的運動,是否存在t的某個值,能滿足PO=OC?如果存在,請求出t的值。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點(0,3),(-3,0),(2, -5),且與x軸交于A、B兩點.
(1)試確定此二次函數(shù)的解析式;
(2)求出拋物線的頂點C的坐標;
(3)判斷點P(-2,3)是否在這個二次函數(shù)的圖象上?如果在,請求出△PAB的面積;如果不在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一開口向上的拋物線與x軸交于A(m-2,0),B(m+2,0)兩點,記拋物線頂點為C,且AC⊥BC.
(1)若m為常數(shù),求拋物線的解析式;
(2)若m為小于0的常數(shù),那么(1)中的拋物線經(jīng)過怎么樣的平移可以使頂點在坐標原點?
(3)設拋物線交y軸正半軸于D點,問是否存在實數(shù)m,使得△BOD為等腰三角形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)的圖象如圖所示,下列結論正確的是(     )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,從地面垂直向上拋出一小球,小球的高度(單位:米)與小球運動時間(單位:秒)的函數(shù)關系式是,那么小球運動中的最大高度   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

函數(shù)的圖象經(jīng)過點,則的值為    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知拋物線y=-x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是( 。
A.-2.5<x<
1
2
B.-1.5<x<
1
2
C.x>
1
2
或x<-2.5
D.x<
1
2
或x>-2.5

查看答案和解析>>

同步練習冊答案