如圖所示,在矩形ABCD中,AB=12厘米,BC=6厘米,點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以2厘米/秒的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D向點(diǎn)A以1厘米/秒的速度移動(dòng).如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)時(shí)間(0≤t≤6).那么:
(1)當(dāng)t為何值時(shí),△QAP為等腰直角三角形?
(2)當(dāng)t為何值時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC相似?
分析:(1)根據(jù)題意得出DQ=t,AP=2t,QA=6-t,由于△QAP為等腰直角三角形,則6-t=2t,求出t的值即可;
(2)由于以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC的對應(yīng)邊不能確定,故應(yīng)分兩種情況進(jìn)行討論.
解答:解:(1)∵AB=12厘米,BC=6厘米,點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以2厘米/秒的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D向點(diǎn)A以1厘米/秒的速度移動(dòng),
∴DQ=t,AP=2t,QA=6-t,
當(dāng)△QAP為等腰直角三角形即6-t=2t,解得t=2;

(2)兩種情況:
當(dāng)
AQ
AB
=
AP
BC
時(shí),即
6-t
12
=
2t
6
,解得t=1.2(秒);
當(dāng)
AQ
BC
=
AP
AB
時(shí),即
6-t
6
=
2t
12
,解得t=3(秒).
故當(dāng)經(jīng)過1.2秒或3秒時(shí),△QAP與△ABC相似.
點(diǎn)評:本題考查的是相似三角形的性質(zhì)及等腰直角三角形的性質(zhì),熟知相似三角形的對應(yīng)邊成比例是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中,AB=6,AD=2
3
,點(diǎn)P是邊BC上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),過點(diǎn)P作直線PQ∥BD,交CD邊于Q點(diǎn),再把△PQC沿著動(dòng)直線PQ對折,點(diǎn)C的對應(yīng)點(diǎn)是R點(diǎn).設(shè)CP=x,△PQR與矩形ABCD重疊部分的面積為y.
(1)求∠CPQ的度數(shù).
(2)當(dāng)x取何值時(shí),點(diǎn)R落在矩形ABCD的邊AB上?
(3)當(dāng)點(diǎn)R在矩形ABCD外部時(shí),求y與x的函數(shù)關(guān)系式.并求此時(shí)函數(shù)值y的取值范圍.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在矩形ABCD中,AB=1,BC=2,E是CD邊的中點(diǎn).點(diǎn)P從點(diǎn)A開始,沿逆時(shí)針方向在矩形邊上勻速運(yùn)動(dòng),到點(diǎn)E停止.設(shè)點(diǎn)P經(jīng)過的路程為x,△APE的面積為S,則S關(guān)于x的函數(shù)關(guān)系的大致圖象是(  )
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中,AB=12cm,BC=5cm,點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以2cm/s的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1cm/s的速度移動(dòng).如果P、Q同時(shí)出發(fā),當(dāng)Q到達(dá)終點(diǎn)時(shí),精英家教網(wǎng)P也隨之停止運(yùn)動(dòng).用t表示移動(dòng)時(shí)間,設(shè)四邊形QAPC的面積為S.
(1)試用t表示AQ、BP的長;
(2)試求出S與t的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí),△QAP為等腰直角三角形?并求出此時(shí)S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中,E為BC上一動(dòng)點(diǎn),BE=kCE,ED交AC于點(diǎn)P,DQ⊥AC于Q,A精英家教網(wǎng)B=nBC
(1)當(dāng)n=1,k=2時(shí)(如圖1),
CP
PQ
=
 

(2)當(dāng)n=
2
,k=1時(shí)(如圖2),求證:CP=AQ;
(3)若k=1,當(dāng)n=
 
時(shí),有CP⊥DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中,AB=4cm,BC=8cm、點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),點(diǎn)P、Q的速度都是1cm/s.
(1)在運(yùn)動(dòng)過程中,經(jīng)過
3
3
秒后,四邊形AQCP是菱形;
(2)菱形AQCP的周長為
20
20
cm、面積為
20
20
cm2

查看答案和解析>>

同步練習(xí)冊答案