【題目】凸四邊形的四個頂點滿足:每一個頂點到其他三個頂點距離之積都相等.則四邊形一定是(

A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形

【答案】D

【解析】

根據(jù)每一個頂點到其他三個頂點距離之積都相等,可得S=ABADAC…,S=BABDBC…,S=CACBCD…,S=DADBDC…④,然后由②、④得ABBC=ADCD(1),由①、③得BCCD=ABAD(2),再由(1)除以(2)可得AB=CD,同樣的方法可得BC=AD,AC=BD,由此即可判定四邊形的形狀.

A點的角度看,S=ABADAC…

B點的角度看,S=BABDBC…

C點的角度看,S=CACBCD…

D點的角度看,S=DADBDC…

由②、④得ABBC=ADCD…(1)

由①③得BCCD=ABAD…(2)

由(1)÷(2)得,

,

CD2=AB2,即CD=AB,

同理可得:BC=AD,AC=BD,

∴四邊形ABCD是矩形,

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,AC=BC=4cm,點D是斜邊AB的中點,點E從點B出發(fā)以1cm/s的速度向點C運(yùn)動,點F同時從點C出發(fā)以一定的速度沿射線CA方向運(yùn)動,規(guī)定:當(dāng)點E到終點C時停止運(yùn)動;設(shè)運(yùn)動的時間為x秒,連接DE、DF.

(1)填空:SABC=   cm2;

(2)當(dāng)x=1且點F運(yùn)動的速度也是1cm/s時,求證:DE=DF;

(3)若動點F以3cm/s的速度沿射線CA方向運(yùn)動;在點E、點F運(yùn)動過程中,如果有某個時間x,使得ADF的面積與BDE的面積存在兩倍關(guān)系,請你直接寫出時間x的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】繞點按逆時針方向旋轉(zhuǎn)度,并使各邊長變?yōu)樵瓉淼?/span>倍,得,即如圖①,我們將這種變換記為

如圖①,對作變換,則________;直線與直線所夾的銳角為________度;

如圖②,中,,,對作變換,使點、、在同一直線上,且四邊形為矩形,求的值;

如圖③,中,,,對作變換,使點、、在同一直線上,且四邊形為平行四邊形,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,是一條射線,,一只螞蟻由速度向爬行,同時另一只螞蟻由點以的速度沿方向爬行,幾秒鐘后,兩只螞蟻與點組成的三角形面積為?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABC中,∠BAC90°,ADBCD,∠ABC的平分線分別交AC、ADE、F兩點,MEF的中點,延長AMBC于點N,連接DM,下列結(jié)論:①AEAF;②DFDN;③AECN;④△AMD和△DMN的面積相等,其中錯誤的結(jié)論個數(shù)是( 。

A.3B.2C.1D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一張長12cm、寬5cm的矩形紙片內(nèi),要折出一個菱形小華同學(xué)按照取兩組對邊中點的方法折出菱形EFGH見方案一),小麗同學(xué)沿矩形的對角線AC折出CAE=CAD,ACF=ACB的方法得到菱形AECF見方案二).

1你能說出小華、小麗所折出的菱形的理由嗎?

2請你通過計算,比較小華和小麗同學(xué)的折法中,哪種菱形面積較大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形ABC中,點DBC的中點,點E、F分別是邊AB、AC(含線段ABAC的端點)上的動點,且∠EDF120°,小明和小慧對這個圖形展開如下研究:

問題初探:(1)如圖1,小明發(fā)現(xiàn):當(dāng)∠DEB90°時,BE+CFnAB,則n的值為   ;

問題再探:(2)如圖2,在點E、F的運(yùn)動過程中,小慧發(fā)現(xiàn)兩個有趣的結(jié)論:

DE始終等于DF;②BECF的和始終不變;請你選擇其中一個結(jié)論加以證明.

成果運(yùn)用:3)若邊長AB8,在點E、F的運(yùn)動過程中,記四邊形DEAF的周長為L,LDE+EA+AF+FD,則周長L 取最大值和最小值時E點的位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于EF點,若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰中,,點為邊上一點(不與點、點重合),,垂足為,交于點.

1)請猜想之間的數(shù)量關(guān)系,并證明;

2)若點為邊延長線上一點,,垂足為,交延長線于點,請在圖2中畫出圖形,并判斷(1)中的結(jié)論是否成立.若成立,請證明;若不成立,請寫出你的猜想并證明.

查看答案和解析>>

同步練習(xí)冊答案