【題目】某公司有10名工作人員他們的月工資情況如表(其中x為未知數(shù)),他們的月平均工資是2.3萬元,根據(jù)表中信息計(jì)算該公司工作人員的月工資的中位數(shù)和眾數(shù)分別是( )
職位 | 經(jīng)理 | 副經(jīng)理 | A職員 | B職員 | C職員 |
人數(shù) | 1 | 2 | 2 | 4 | 1 |
月工資(萬元/人) | 5 | 3 | 2 | x | 0.8 |
A. 2,4 B. 1.9,1.8 C. 2,1.8 D. 1.8,1.9
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在下列條件中,不能判斷△ABD≌△BAC的條件是( )
A.AD=BC,BD=ACB.AD=BC,∠BAD=∠ABC
C.BD=AC,∠DBA=∠CABD.AD=BC,∠D=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,已知直線分別與軸,軸交于,兩點(diǎn),直線:交于點(diǎn).
(1)求,兩點(diǎn)的坐標(biāo);
(2)如圖1,點(diǎn)E是線段OB的中點(diǎn),連結(jié)AE,點(diǎn)F是射線OG上一點(diǎn), 當(dāng),且時(shí),求的長;
(3)如圖2,若,過點(diǎn)作∥,交軸于點(diǎn),此時(shí)在軸上是否存在點(diǎn),使,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把放在直角坐標(biāo)系內(nèi),其中,,點(diǎn)、的坐標(biāo)分別為、.
點(diǎn)的坐標(biāo)是________;
將沿軸向右平移,當(dāng)點(diǎn)落在直線上時(shí),線段掃過的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:小明遇到這樣一個(gè)問題:如圖1,在四邊形ABCD中,∠B=∠C=90°,E是BC的中點(diǎn),AE、DE分別平分∠DAB、∠CDA.求證:AD=AB+CD.
小明經(jīng)探究發(fā)現(xiàn),在AD上截取AF=AB,連接EF(如圖2),從而可證△AEF≌△AEB,使問題得到解決.
(1)請(qǐng)你按照小明的探究思路,完成他的證明過程;
參考小明思考問題的方法,解決下面的問題:
(2)如圖3,△ABC是等腰直角三角形,∠A=90°,點(diǎn)D為邊AC上任意一點(diǎn)(不與點(diǎn)A、B重合),以BD為腰作等腰直角△BDE,∠DBE=90°.過點(diǎn)E作BE⊥EG交BA的延長線于點(diǎn)G,過點(diǎn)D作DF⊥BD,交BC于點(diǎn)F,連接FG,猜想EG、DF、FG之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店按進(jìn)貨價(jià)每件6元購進(jìn)一批貨,零售價(jià)為8元時(shí),可以賣出100件,如果零售價(jià)高于8元,那么一件也賣不出去,零售價(jià)從8元每降低0.1元,可以多賣出10件.設(shè)零售價(jià)定為x元(6≤x≤8).
(1)這時(shí)比零售為8元可以多賣出幾件?
(2)這時(shí)可以賣出多少件?
(3)這時(shí)所獲利潤y(元)與零售價(jià)x(元)的關(guān)系式怎樣?
(4)為零售價(jià)定為多少時(shí),所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給出四個(gè)等式:①AE=AD;②AB=AC;③OB=OC;④∠B=∠C.現(xiàn)選取其中的三個(gè),以兩個(gè)作為已知條件,另一個(gè)作為結(jié)論.
(1)請(qǐng)你寫出一個(gè)正確的命題,并加以證明;
(2)請(qǐng)你至少寫出三個(gè)這樣的正確命題.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com